/* phi2 cubehash-512 144-bytes input (80 + 64) */ #include #include #define CUBEHASH_ROUNDS 16 /* this is r for CubeHashr/b */ #define CUBEHASH_BLOCKBYTES 32 /* this is b for CubeHashr/b */ #if __CUDA_ARCH__ < 350 #define LROT(x,bits) ((x << bits) | (x >> (32 - bits))) #else #define LROT(x, bits) __funnelshift_l(x, x, bits) #endif #define ROTATEUPWARDS7(a) LROT(a,7) #define ROTATEUPWARDS11(a) LROT(a,11) #define SWAP(a,b) { uint32_t u = a; a = b; b = u; } #ifdef NO_MIDSTATE __device__ __constant__ static const uint32_t c_IV_512[32] = { 0x2AEA2A61, 0x50F494D4, 0x2D538B8B, 0x4167D83E, 0x3FEE2313, 0xC701CF8C, 0xCC39968E, 0x50AC5695, 0x4D42C787, 0xA647A8B3, 0x97CF0BEF, 0x825B4537, 0xEEF864D2, 0xF22090C4, 0xD0E5CD33, 0xA23911AE, 0xFCD398D9, 0x148FE485, 0x1B017BEF, 0xB6444532, 0x6A536159, 0x2FF5781C, 0x91FA7934, 0x0DBADEA9, 0xD65C8A2B, 0xA5A70E75, 0xB1C62456, 0xBC796576, 0x1921C8F7, 0xE7989AF1, 0x7795D246, 0xD43E3B44 }; #endif __device__ __forceinline__ static void rrounds(uint32_t x[2][2][2][2][2]) { int r; int j; int k; int l; int m; //#pragma unroll 16 for (r = 0;r < CUBEHASH_ROUNDS;++r) { /* "add x_0jklm into x_1jklmn modulo 2^32" */ #pragma unroll 2 for (j = 0;j < 2;++j) #pragma unroll 2 for (k = 0;k < 2;++k) #pragma unroll 2 for (l = 0;l < 2;++l) #pragma unroll 2 for (m = 0;m < 2;++m) x[1][j][k][l][m] += x[0][j][k][l][m]; /* "rotate x_0jklm upwards by 7 bits" */ #pragma unroll 2 for (j = 0;j < 2;++j) #pragma unroll 2 for (k = 0;k < 2;++k) #pragma unroll 2 for (l = 0;l < 2;++l) #pragma unroll 2 for (m = 0;m < 2;++m) x[0][j][k][l][m] = ROTATEUPWARDS7(x[0][j][k][l][m]); /* "swap x_00klm with x_01klm" */ #pragma unroll 2 for (k = 0;k < 2;++k) #pragma unroll 2 for (l = 0;l < 2;++l) #pragma unroll 2 for (m = 0;m < 2;++m) SWAP(x[0][0][k][l][m],x[0][1][k][l][m]) /* "xor x_1jklm into x_0jklm" */ #pragma unroll 2 for (j = 0;j < 2;++j) #pragma unroll 2 for (k = 0;k < 2;++k) #pragma unroll 2 for (l = 0;l < 2;++l) #pragma unroll 2 for (m = 0;m < 2;++m) x[0][j][k][l][m] ^= x[1][j][k][l][m]; /* "swap x_1jk0m with x_1jk1m" */ #pragma unroll 2 for (j = 0;j < 2;++j) #pragma unroll 2 for (k = 0;k < 2;++k) #pragma unroll 2 for (m = 0;m < 2;++m) SWAP(x[1][j][k][0][m],x[1][j][k][1][m]) /* "add x_0jklm into x_1jklm modulo 2^32" */ #pragma unroll 2 for (j = 0;j < 2;++j) #pragma unroll 2 for (k = 0;k < 2;++k) #pragma unroll 2 for (l = 0;l < 2;++l) #pragma unroll 2 for (m = 0;m < 2;++m) x[1][j][k][l][m] += x[0][j][k][l][m]; /* "rotate x_0jklm upwards by 11 bits" */ #pragma unroll 2 for (j = 0;j < 2;++j) #pragma unroll 2 for (k = 0;k < 2;++k) #pragma unroll 2 for (l = 0;l < 2;++l) #pragma unroll 2 for (m = 0;m < 2;++m) x[0][j][k][l][m] = ROTATEUPWARDS11(x[0][j][k][l][m]); /* "swap x_0j0lm with x_0j1lm" */ #pragma unroll 2 for (j = 0;j < 2;++j) #pragma unroll 2 for (l = 0;l < 2;++l) #pragma unroll 2 for (m = 0;m < 2;++m) SWAP(x[0][j][0][l][m],x[0][j][1][l][m]) /* "xor x_1jklm into x_0jklm" */ #pragma unroll 2 for (j = 0;j < 2;++j) #pragma unroll 2 for (k = 0;k < 2;++k) #pragma unroll 2 for (l = 0;l < 2;++l) #pragma unroll 2 for (m = 0;m < 2;++m) x[0][j][k][l][m] ^= x[1][j][k][l][m]; /* "swap x_1jkl0 with x_1jkl1" */ #pragma unroll 2 for (j = 0;j < 2;++j) #pragma unroll 2 for (k = 0;k < 2;++k) #pragma unroll 2 for (l = 0;l < 2;++l) SWAP(x[1][j][k][l][0],x[1][j][k][l][1]) } } __device__ __forceinline__ static void block_tox(uint32_t* const block, uint32_t x[2][2][2][2][2]) { // read 32 bytes input from global mem with uint2 chunks AS_UINT2(x[0][0][0][0]) ^= AS_UINT2(&block[0]); AS_UINT2(x[0][0][0][1]) ^= AS_UINT2(&block[2]); AS_UINT2(x[0][0][1][0]) ^= AS_UINT2(&block[4]); AS_UINT2(x[0][0][1][1]) ^= AS_UINT2(&block[6]); } __device__ __forceinline__ static void hash_fromx(uint32_t hash[16], uint32_t const x[2][2][2][2][2]) { // used to write final hash to global mem AS_UINT2(&hash[ 0]) = AS_UINT2(x[0][0][0][0]); AS_UINT2(&hash[ 2]) = AS_UINT2(x[0][0][0][1]); AS_UINT2(&hash[ 4]) = AS_UINT2(x[0][0][1][0]); AS_UINT2(&hash[ 6]) = AS_UINT2(x[0][0][1][1]); AS_UINT2(&hash[ 8]) = AS_UINT2(x[0][1][0][0]); AS_UINT2(&hash[10]) = AS_UINT2(x[0][1][0][1]); AS_UINT2(&hash[12]) = AS_UINT2(x[0][1][1][0]); AS_UINT2(&hash[14]) = AS_UINT2(x[0][1][1][1]); } #define Init(x) \ AS_UINT2(x[0][0][0][0]) = AS_UINT2(&c_IV_512[ 0]); \ AS_UINT2(x[0][0][0][1]) = AS_UINT2(&c_IV_512[ 2]); \ AS_UINT2(x[0][0][1][0]) = AS_UINT2(&c_IV_512[ 4]); \ AS_UINT2(x[0][0][1][1]) = AS_UINT2(&c_IV_512[ 6]); \ AS_UINT2(x[0][1][0][0]) = AS_UINT2(&c_IV_512[ 8]); \ AS_UINT2(x[0][1][0][1]) = AS_UINT2(&c_IV_512[10]); \ AS_UINT2(x[0][1][1][0]) = AS_UINT2(&c_IV_512[12]); \ AS_UINT2(x[0][1][1][1]) = AS_UINT2(&c_IV_512[14]); \ AS_UINT2(x[1][0][0][0]) = AS_UINT2(&c_IV_512[16]); \ AS_UINT2(x[1][0][0][1]) = AS_UINT2(&c_IV_512[18]); \ AS_UINT2(x[1][0][1][0]) = AS_UINT2(&c_IV_512[20]); \ AS_UINT2(x[1][0][1][1]) = AS_UINT2(&c_IV_512[22]); \ AS_UINT2(x[1][1][0][0]) = AS_UINT2(&c_IV_512[24]); \ AS_UINT2(x[1][1][0][1]) = AS_UINT2(&c_IV_512[26]); \ AS_UINT2(x[1][1][1][0]) = AS_UINT2(&c_IV_512[28]); \ AS_UINT2(x[1][1][1][1]) = AS_UINT2(&c_IV_512[30]); __device__ __forceinline__ static void Update32(uint32_t x[2][2][2][2][2], uint32_t* const data) { /* "xor the block into the first b bytes of the state" */ block_tox(data, x); /* "and then transform the state invertibly through r identical rounds" */ rrounds(x); } __device__ __forceinline__ static void Final(uint32_t x[2][2][2][2][2], uint32_t *hashval) { /* "the integer 1 is xored into the last state word x_11111" */ x[1][1][1][1][1] ^= 1; /* "the state is then transformed invertibly through 10r identical rounds" */ #pragma unroll 10 for (int i = 0; i < 10; i++) rrounds(x); /* "output the first h/8 bytes of the state" */ hash_fromx(hashval, x); } __host__ void phi2_cubehash512_cpu_init(int thr_id, uint32_t threads) { } /***************************************************/ /** * Timetravel and x16 CUBEHASH-80 CUDA implementation * by tpruvot@github - Jan 2017 / May 2018 */ __constant__ static uint32_t c_midstate128[32]; __constant__ static uint32_t c_PaddedMessage_144[36]; #undef SPH_C32 #undef SPH_C64 #undef SPH_T32 #undef SPH_T64 #include "sph/sph_cubehash.h" __host__ void cubehash512_setBlock_144(int thr_id, uint32_t* endiandata) { sph_cubehash512_context ctx_cubehash; sph_cubehash512_init(&ctx_cubehash); sph_cubehash512(&ctx_cubehash, (void*)endiandata, 64); #ifndef NO_MIDSTATE cudaMemcpyToSymbol(c_midstate128, ctx_cubehash.state, 128, 0, cudaMemcpyHostToDevice); #endif cudaMemcpyToSymbol(c_PaddedMessage_144, endiandata, sizeof(c_PaddedMessage_144), 0, cudaMemcpyHostToDevice); } __global__ void cubehash512_gpu_hash_144(const uint32_t threads, const uint32_t startNounce, uint64_t *g_outhash) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint32_t nonce = startNounce + thread; uint32_t message[8]; uint32_t x[2][2][2][2][2]; #ifdef NO_MIDSTATE Init(x); // first 32 bytes AS_UINT4(&message[0]) = AS_UINT4(&c_PaddedMessage_144[0]); AS_UINT4(&message[4]) = AS_UINT4(&c_PaddedMessage_144[4]); Update32(x, message); // second 32 bytes AS_UINT4(&message[0]) = AS_UINT4(&c_PaddedMessage_144[8]); AS_UINT4(&message[4]) = AS_UINT4(&c_PaddedMessage_144[12]); Update32(x, message); #else AS_UINT2(x[0][0][0][0]) = AS_UINT2(&c_midstate128[ 0]); AS_UINT2(x[0][0][0][1]) = AS_UINT2(&c_midstate128[ 2]); AS_UINT2(x[0][0][1][0]) = AS_UINT2(&c_midstate128[ 4]); AS_UINT2(x[0][0][1][1]) = AS_UINT2(&c_midstate128[ 6]); AS_UINT2(x[0][1][0][0]) = AS_UINT2(&c_midstate128[ 8]); AS_UINT2(x[0][1][0][1]) = AS_UINT2(&c_midstate128[10]); AS_UINT2(x[0][1][1][0]) = AS_UINT2(&c_midstate128[12]); AS_UINT2(x[0][1][1][1]) = AS_UINT2(&c_midstate128[14]); AS_UINT2(x[1][0][0][0]) = AS_UINT2(&c_midstate128[16]); AS_UINT2(x[1][0][0][1]) = AS_UINT2(&c_midstate128[18]); AS_UINT2(x[1][0][1][0]) = AS_UINT2(&c_midstate128[20]); AS_UINT2(x[1][0][1][1]) = AS_UINT2(&c_midstate128[22]); AS_UINT2(x[1][1][0][0]) = AS_UINT2(&c_midstate128[24]); AS_UINT2(x[1][1][0][1]) = AS_UINT2(&c_midstate128[26]); AS_UINT2(x[1][1][1][0]) = AS_UINT2(&c_midstate128[28]); AS_UINT2(x[1][1][1][1]) = AS_UINT2(&c_midstate128[30]); #endif // nonce + state root AS_UINT4(&message[0]) = AS_UINT4(&c_PaddedMessage_144[16]); message[3] = cuda_swab32(nonce); AS_UINT4(&message[4]) = AS_UINT4(&c_PaddedMessage_144[20]); // state Update32(x, message); AS_UINT4(&message[0]) = AS_UINT4(&c_PaddedMessage_144[24]); // state AS_UINT4(&message[4]) = AS_UINT4(&c_PaddedMessage_144[28]); // utxo Update32(x, message); AS_UINT4(&message[0]) = AS_UINT4(&c_PaddedMessage_144[32]); // utxo message[4] = 0x80; message[5] = 0; message[6] = 0; message[7] = 0; Update32(x, message); uint32_t* output = (uint32_t*) (&g_outhash[(size_t)8 * thread]); Final(x, output); } } __host__ void cubehash512_cuda_hash_144(const int thr_id, const uint32_t threads, const uint32_t startNounce, uint32_t *d_hash) { const uint32_t threadsperblock = 256; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); cubehash512_gpu_hash_144 <<>> (threads, startNounce, (uint64_t*) d_hash); }