// Auf QuarkCoin spezialisierte Version von Groestl inkl. Bitslice #include #include #include // off_t #include "cuda_helper.h" #define TPB 256 #define THF 4 #if __CUDA_ARCH__ >= 300 #include "quark/groestl_functions_quad.h" #include "quark/groestl_transf_quad.h" #endif #include "quark/cuda_quark_groestl512_sm20.cu" __global__ __launch_bounds__(TPB, THF) void quark_groestl512_gpu_hash_64_quad(uint32_t threads, uint32_t startNounce, uint32_t * __restrict g_hash, uint32_t * __restrict g_nonceVector) { #if __CUDA_ARCH__ >= 300 // durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2; if (thread < threads) { // GROESTL uint32_t message[8]; uint32_t state[8]; uint32_t nounce = g_nonceVector ? g_nonceVector[thread] : (startNounce + thread); off_t hashPosition = nounce - startNounce; uint32_t *pHash = &g_hash[hashPosition << 4]; const uint32_t thr = threadIdx.x % THF; #pragma unroll for(int k=0;k<4;k++) message[k] = pHash[thr + (k * THF)]; #pragma unroll for(int k=4;k<8;k++) message[k] = 0; if (thr == 0) message[4] = 0x80U; if (thr == 3) message[7] = 0x01000000U; uint32_t msgBitsliced[8]; to_bitslice_quad(message, msgBitsliced); groestl512_progressMessage_quad(state, msgBitsliced); // Nur der erste von jeweils 4 Threads bekommt das Ergebns-Hash uint32_t hash[16]; from_bitslice_quad(state, hash); // uint4 = 4x4 uint32_t = 16 bytes if (thr == 0) { uint4 *phash = (uint4*) hash; uint4 *outpt = (uint4*) pHash; outpt[0] = phash[0]; outpt[1] = phash[1]; outpt[2] = phash[2]; outpt[3] = phash[3]; } /* if (thr == 0) { #pragma unroll for(int k=0;k<16;k++) outpHash[k] = hash[k]; } */ } #endif } __global__ void __launch_bounds__(TPB, THF) quark_doublegroestl512_gpu_hash_64_quad(uint32_t threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *g_nonceVector) { #if __CUDA_ARCH__ >= 300 uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x)>>2; if (thread < threads) { // GROESTL uint32_t message[8]; uint32_t state[8]; uint32_t nounce = g_nonceVector ? g_nonceVector[thread] : (startNounce + thread); off_t hashPosition = nounce - startNounce; uint32_t * inpHash = &g_hash[hashPosition<<4]; const uint16_t thr = threadIdx.x % THF; #pragma unroll for(int k=0;k<4;k++) message[k] = inpHash[(k * THF) + thr]; #pragma unroll for(int k=4;k<8;k++) message[k] = 0; if (thr == 0) message[4] = 0x80; if (thr == 3) message[7] = 0x01000000; uint32_t msgBitsliced[8]; to_bitslice_quad(message, msgBitsliced); for (int round=0; round<2; round++) { groestl512_progressMessage_quad(state, msgBitsliced); if (round < 1) { // Verkettung zweier Runden inclusive Padding. msgBitsliced[ 0] = __byte_perm(state[ 0], 0x00800100, 0x4341 + (((threadIdx.x%4)==3)<<13)); msgBitsliced[ 1] = __byte_perm(state[ 1], 0x00800100, 0x4341); msgBitsliced[ 2] = __byte_perm(state[ 2], 0x00800100, 0x4341); msgBitsliced[ 3] = __byte_perm(state[ 3], 0x00800100, 0x4341); msgBitsliced[ 4] = __byte_perm(state[ 4], 0x00800100, 0x4341); msgBitsliced[ 5] = __byte_perm(state[ 5], 0x00800100, 0x4341); msgBitsliced[ 6] = __byte_perm(state[ 6], 0x00800100, 0x4341); msgBitsliced[ 7] = __byte_perm(state[ 7], 0x00800100, 0x4341 + (((threadIdx.x%4)==0)<<4)); } } // Nur der erste von jeweils 4 Threads bekommt das Ergebns-Hash uint32_t *outpHash = inpHash; uint32_t hash[16]; from_bitslice_quad(state, hash); if (thr == 0) { #pragma unroll for(int k=0;k<16;k++) outpHash[k] = hash[k]; } } #endif } __host__ void quark_groestl512_cpu_init(int thr_id, uint32_t threads) { int dev_id = device_map[thr_id]; cuda_get_arch(thr_id); if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) quark_groestl512_sm20_init(thr_id, threads); } __host__ void quark_groestl512_cpu_free(int thr_id) { int dev_id = device_map[thr_id]; if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) quark_groestl512_sm20_free(thr_id); } __host__ void quark_groestl512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) { int threadsperblock = TPB; // Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle // mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl const int factor = THF; // berechne wie viele Thread Blocks wir brauchen dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); dim3 block(threadsperblock); int dev_id = device_map[thr_id]; if (device_sm[dev_id] >= 300 && cuda_arch[dev_id] >= 300) quark_groestl512_gpu_hash_64_quad<<>>(threads, startNounce, d_hash, d_nonceVector); else quark_groestl512_sm20_hash_64(thr_id, threads, startNounce, d_nonceVector, d_hash, order); // Strategisches Sleep Kommando zur Senkung der CPU Last MyStreamSynchronize(NULL, order, thr_id); } __host__ void quark_doublegroestl512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) { const int factor = THF; int threadsperblock = TPB; dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); dim3 block(threadsperblock); int dev_id = device_map[thr_id]; if (device_sm[dev_id] >= 300 && cuda_arch[dev_id] >= 300) quark_doublegroestl512_gpu_hash_64_quad<<>>(threads, startNounce, d_hash, d_nonceVector); else quark_doublegroestl512_sm20_hash_64(thr_id, threads, startNounce, d_nonceVector, d_hash, order); MyStreamSynchronize(NULL, order, thr_id); }