#include #include #include #include #include #include #include #include "cryptonight.h" #ifdef WIN32 int cn_bfactor = 8; int cn_bsleep = 100; #else int cn_bfactor = 0; int cn_bsleep = 0; #endif #include "cn_aes.cuh" #define MUL_SUM_XOR_DST(a,c,dst) { \ uint64_t hi, lo = cuda_mul128(((uint64_t *)a)[0], ((uint64_t *)dst)[0], &hi) + ((uint64_t *)c)[1]; \ hi += ((uint64_t *)c)[0]; \ ((uint64_t *)c)[0] = ((uint64_t *)dst)[0] ^ hi; \ ((uint64_t *)c)[1] = ((uint64_t *)dst)[1] ^ lo; \ ((uint64_t *)dst)[0] = hi; \ ((uint64_t *)dst)[1] = lo; } __device__ __forceinline__ uint64_t cuda_mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) { *product_hi = __umul64hi(multiplier, multiplicand); return(multiplier * multiplicand); } __global__ void cryptonight_core_gpu_phase1(int threads, uint32_t * __restrict__ long_state, uint32_t * __restrict__ ctx_state, uint32_t * __restrict__ ctx_key1) { __shared__ uint32_t sharedMemory[1024]; cn_aes_gpu_init(sharedMemory); const int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 3; const int sub = (threadIdx.x & 7) << 2; if(thread < threads) { uint32_t key[40], text[4]; MEMCPY8(key, ctx_key1 + thread * 40, 20); MEMCPY8(text, ctx_state + thread * 50 + sub + 16, 2); __syncthreads(); for(int i = 0; i < 0x80000; i += 32) { cn_aes_pseudo_round_mut(sharedMemory, text, key); MEMCPY8(&long_state[(thread << 19) + sub + i], text, 2); } } } __global__ void cryptonight_core_gpu_phase2(const int threads, const int bfactor, const int partidx, uint32_t * d_long_state, uint32_t * d_ctx_a, uint32_t * d_ctx_b) { __shared__ uint32_t sharedMemory[1024]; cn_aes_gpu_init(sharedMemory); __syncthreads(); #if 0 && __CUDA_ARCH__ >= 300 const int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2; const int sub = threadIdx.x & 3; if(thread < threads) { const int batchsize = ITER >> (2 + bfactor); const int start = partidx * batchsize; const int end = start + batchsize; uint32_t * __restrict__ long_state = &d_long_state[thread << 19]; uint32_t * __restrict__ ctx_a = d_ctx_a + thread * 4; uint32_t * __restrict__ ctx_b = d_ctx_b + thread * 4; uint32_t a, b, c, x[4]; uint32_t t1[4], t2[4], res; uint64_t reshi, reslo; int j; a = ctx_a[sub]; b = ctx_b[sub]; #pragma unroll 8 for(int i = start; i < end; ++i) { //j = ((uint32_t *)a)[0] & 0x1FFFF0; j = (__shfl((int)a, 0, 4) & 0x1FFFF0) >> 2; //cn_aes_single_round(sharedMemory, &long_state[j], c, a); x[0] = long_state[j + sub]; x[1] = __shfl((int)x[0], sub + 1, 4); x[2] = __shfl((int)x[0], sub + 2, 4); x[3] = __shfl((int)x[0], sub + 3, 4); c = a ^ t_fn0(x[0] & 0xff) ^ t_fn1((x[1] >> 8) & 0xff) ^ t_fn2((x[2] >> 16) & 0xff) ^ t_fn3((x[3] >> 24) & 0xff); //XOR_BLOCKS_DST(c, b, &long_state[j]); long_state[j + sub] = c ^ b; //MUL_SUM_XOR_DST(c, a, &long_state[((uint32_t *)c)[0] & 0x1FFFF0]); j = (__shfl((int)c, 0, 4) & 0x1FFFF0) >> 2; #pragma unroll for(int k = 0; k < 2; k++) t1[k] = __shfl((int)c, k, 4); #pragma unroll for(int k = 0; k < 4; k++) t2[k] = __shfl((int)a, k, 4); asm( "mad.lo.u64 %0, %2, %3, %4;\n\t" "mad.hi.u64 %1, %2, %3, %5;\n\t" : "=l"(reslo), "=l"(reshi) : "l"(((uint64_t *)t1)[0]), "l"(((uint64_t *)long_state)[j >> 1]), "l"(((uint64_t *)t2)[1]), "l"(((uint64_t *)t2)[0])); res = (sub & 2 ? reslo : reshi) >> (sub & 1 ? 32 : 0); a = long_state[j + sub] ^ res; long_state[j + sub] = res; //j = ((uint32_t *)a)[0] & 0x1FFFF0; j = (__shfl((int)a, 0, 4) & 0x1FFFF0) >> 2; //cn_aes_single_round(sharedMemory, &long_state[j], b, a); x[0] = long_state[j + sub]; x[1] = __shfl((int)x[0], sub + 1, 4); x[2] = __shfl((int)x[0], sub + 2, 4); x[3] = __shfl((int)x[0], sub + 3, 4); b = a ^ t_fn0(x[0] & 0xff) ^ t_fn1((x[1] >> 8) & 0xff) ^ t_fn2((x[2] >> 16) & 0xff) ^ t_fn3((x[3] >> 24) & 0xff); //XOR_BLOCKS_DST(b, c, &long_state[j]); long_state[j + sub] = c ^ b; //MUL_SUM_XOR_DST(b, a, &long_state[((uint32_t *)b)[0] & 0x1FFFF0]); j = (__shfl((int)b, 0, 4) & 0x1FFFF0) >> 2; #pragma unroll for(int k = 0; k < 2; k++) t1[k] = __shfl((int)b, k, 4); #pragma unroll for(int k = 0; k < 4; k++) t2[k] = __shfl((int)a, k, 4); asm( "mad.lo.u64 %0, %2, %3, %4;\n\t" "mad.hi.u64 %1, %2, %3, %5;\n\t" : "=l"(reslo), "=l"(reshi) : "l"(((uint64_t *)t1)[0]), "l"(((uint64_t *)long_state)[j >> 1]), "l"(((uint64_t *)t2)[1]), "l"(((uint64_t *)t2)[0])); res = (sub & 2 ? reslo : reshi) >> (sub & 1 ? 32 : 0); a = long_state[j + sub] ^ res; long_state[j + sub] = res; } if(bfactor > 0) { ctx_a[sub] = a; ctx_b[sub] = b; } } #else // __CUDA_ARCH__ < 300 const int thread = blockDim.x * blockIdx.x + threadIdx.x; if(thread < threads) { const int batchsize = ITER >> (2 + bfactor); const int start = partidx * batchsize; const int end = start + batchsize; const off_t longptr = (off_t) thread << 19; uint32_t * long_state = &d_long_state[longptr]; uint32_t * ctx_a = &d_ctx_a[thread * 4]; uint32_t * ctx_b = &d_ctx_b[thread * 4]; uint32_t a[4], b[4]; MEMCPY8(a, ctx_a, 2); MEMCPY8(b, ctx_b, 2); for(int i = start; i < end; i++) // end = 262144 { uint32_t c[4]; uint32_t j = (a[0] >> 2) & 0x7FFFC; cn_aes_single_round(sharedMemory, &long_state[j], c, a); XOR_BLOCKS_DST(c, b, &long_state[j]); MUL_SUM_XOR_DST(c, a, &long_state[(c[0] >> 2) & 0x7FFFC]); j = (a[0] >> 2) & 0x7FFFC; cn_aes_single_round(sharedMemory, &long_state[j], b, a); XOR_BLOCKS_DST(b, c, &long_state[j]); MUL_SUM_XOR_DST(b, a, &long_state[(b[0] >> 2) & 0x7FFFC]); } if(bfactor > 0) { MEMCPY8(ctx_a, a, 2); MEMCPY8(ctx_b, b, 2); } } #endif // __CUDA_ARCH__ >= 300 } __global__ void cryptonight_core_gpu_phase3(int threads, const uint32_t * __restrict__ long_state, uint32_t * __restrict__ d_ctx_state, uint32_t * __restrict__ d_ctx_key2) { __shared__ uint32_t sharedMemory[1024]; cn_aes_gpu_init(sharedMemory); int thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 3; int sub = (threadIdx.x & 7) << 2; if(thread < threads) { uint32_t key[40], text[4]; MEMCPY8(key, d_ctx_key2 + thread * 40, 20); MEMCPY8(text, d_ctx_state + thread * 50 + sub + 16, 2); __syncthreads(); for(int i = 0; i < 0x80000; i += 32) { #pragma unroll for(int j = 0; j < 4; ++j) text[j] ^= long_state[(thread << 19) + sub + i + j]; cn_aes_pseudo_round_mut(sharedMemory, text, key); } MEMCPY8(d_ctx_state + thread * 50 + sub + 16, text, 2); } } __host__ void cryptonight_core_cpu_hash(int thr_id, int blocks, int threads, uint32_t *d_long_state, uint32_t *d_ctx_state, uint32_t *d_ctx_a, uint32_t *d_ctx_b, uint32_t *d_ctx_key1, uint32_t *d_ctx_key2) { dim3 grid(blocks); dim3 block(threads); dim3 block4(threads << 2); dim3 block8(threads << 3); const int bfactor = cn_bfactor; // device_bfactor[thr_id]; const int bsleep = cn_bsleep; //device_bsleep[thr_id]; int i, partcount = 1 << bfactor; int dev_id = device_map[thr_id]; cryptonight_core_gpu_phase1 <<>>(blocks*threads, d_long_state, d_ctx_state, d_ctx_key1); exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); if(partcount > 1) usleep(bsleep); for(i = 0; i < partcount; i++) { cryptonight_core_gpu_phase2 <<= 300 ? block4 : block)>>>(blocks*threads, bfactor, i, d_long_state, d_ctx_a, d_ctx_b); exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); if(partcount > 1) usleep(bsleep); } cryptonight_core_gpu_phase3 <<>>(blocks*threads, d_long_state, d_ctx_state, d_ctx_key2); exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); }