#pragma once #include #include #ifdef __INTELLISENSE__ /* avoid red underlining */ #define __CUDA_ARCH__ 520 struct uint3 { unsigned int x, y, z; }; struct uint3 threadIdx; struct uint3 blockIdx; struct uint3 blockDim; #define atomicExch(p,y) (*p) = y #define __funnelshift_r(a,b,c) 1 #define __syncthreads() #define asm(x) #define __shfl(a,b,c) 1 #endif #define MEMORY (1 << 21) // 2 MiB / 2097152 B #define ITER (1 << 20) // 1048576 #define AES_BLOCK_SIZE 16 #define AES_KEY_SIZE 32 #define INIT_SIZE_BLK 8 #define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) // 128 B #define AES_RKEY_LEN 4 #define AES_COL_LEN 4 #define AES_ROUND_BASE 7 #ifndef HASH_SIZE #define HASH_SIZE 32 #endif #ifndef HASH_DATA_AREA #define HASH_DATA_AREA 136 #endif #define hi_dword(x) (x >> 32) #define lo_dword(x) (x & 0xFFFFFFFF) #define C32(x) ((uint32_t)(x ## U)) #define T32(x) ((x) & C32(0xFFFFFFFF)) #ifndef ROTL64 #if __CUDA_ARCH__ >= 350 __forceinline__ __device__ uint64_t cuda_ROTL64(const uint64_t value, const int offset) { uint2 result; if(offset >= 32) { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); } else { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); } return __double_as_longlong(__hiloint2double(result.y, result.x)); } #define ROTL64(x, n) (cuda_ROTL64(x, n)) #else #define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) #endif #endif #ifndef ROTL32 #if __CUDA_ARCH__ < 350 #define ROTL32(x, n) T32(((x) << (n)) | ((x) >> (32 - (n)))) #else #define ROTL32(x, n) __funnelshift_l( (x), (x), (n) ) #endif #endif #ifndef ROTR32 #if __CUDA_ARCH__ < 350 #define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) #else #define ROTR32(x, n) __funnelshift_r( (x), (x), (n) ) #endif #endif #define MEMSET8(dst,what,cnt) { \ int i_memset8; \ uint64_t *out_memset8 = (uint64_t *)(dst); \ for( i_memset8 = 0; i_memset8 < cnt; i_memset8++ ) \ out_memset8[i_memset8] = (what); } #define MEMSET4(dst,what,cnt) { \ int i_memset4; \ uint32_t *out_memset4 = (uint32_t *)(dst); \ for( i_memset4 = 0; i_memset4 < cnt; i_memset4++ ) \ out_memset4[i_memset4] = (what); } #define MEMCPY8(dst,src,cnt) { \ int i_memcpy8; \ uint64_t *in_memcpy8 = (uint64_t *)(src); \ uint64_t *out_memcpy8 = (uint64_t *)(dst); \ for( i_memcpy8 = 0; i_memcpy8 < cnt; i_memcpy8++ ) \ out_memcpy8[i_memcpy8] = in_memcpy8[i_memcpy8]; } #define MEMCPY4(dst,src,cnt) { \ int i_memcpy4; \ uint32_t *in_memcpy4 = (uint32_t *)(src); \ uint32_t *out_memcpy4 = (uint32_t *)(dst); \ for( i_memcpy4 = 0; i_memcpy4 < cnt; i_memcpy4++ ) \ out_memcpy4[i_memcpy4] = in_memcpy4[i_memcpy4]; } #define XOR_BLOCKS_DST(x,y,z) { \ ((uint64_t *)z)[0] = ((uint64_t *)(x))[0] ^ ((uint64_t *)(y))[0]; \ ((uint64_t *)z)[1] = ((uint64_t *)(x))[1] ^ ((uint64_t *)(y))[1]; } #define E2I(x) ((size_t)(((*((uint64_t*)(x)) >> 4) & 0x1ffff))) union hash_state { uint8_t b[200]; uint64_t w[25]; }; union cn_slow_hash_state { union hash_state hs; struct { uint8_t k[64]; uint8_t init[INIT_SIZE_BYTE]; }; }; static inline void exit_if_cudaerror(int thr_id, const char *src, int line) { cudaError_t err = cudaGetLastError(); if(err != cudaSuccess) { gpulog(LOG_ERR, thr_id, "%s %s line %d", cudaGetErrorString(err), src, line); exit(1); } } void cryptonight_core_cpu_hash(int thr_id, int blocks, int threads, uint32_t *d_long_state, uint32_t *d_ctx_state, uint32_t *d_ctx_a, uint32_t *d_ctx_b, uint32_t *d_ctx_key1, uint32_t *d_ctx_key2); void cryptonight_extra_cpu_setData(int thr_id, const void *data, const void *pTargetIn); void cryptonight_extra_cpu_init(int thr_id, uint32_t threads); void cryptonight_extra_cpu_free(int thr_id); void cryptonight_extra_cpu_prepare(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *d_ctx_state, uint32_t *d_ctx_a, uint32_t *d_ctx_b, uint32_t *d_ctx_key1, uint32_t *d_ctx_key2); void cryptonight_extra_cpu_final(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *nonce, uint32_t *d_ctx_state);