/** * Timetravel CUDA implementation * by tpruvot@github - March 2017 */ #include #include #include #define HASH_FUNC_BASE_TIMESTAMP 1389040865U // Machinecoin Genesis Timestamp #define HASH_FUNC_COUNT 8 #define HASH_FUNC_COUNT_PERMUTATIONS 40320U extern "C" { #include "sph/sph_blake.h" #include "sph/sph_bmw.h" #include "sph/sph_groestl.h" #include "sph/sph_skein.h" #include "sph/sph_jh.h" #include "sph/sph_keccak.h" #include "sph/sph_luffa.h" #include "sph/sph_cubehash.h" } #include "miner.h" #include "cuda_helper.h" #include "cuda_x11.h" static uint32_t *d_hash[MAX_GPUS]; enum Algo { BLAKE = 0, BMW, GROESTL, SKEIN, JH, KECCAK, LUFFA, CUBEHASH, MAX_ALGOS_COUNT }; static const char* algo_strings[] = { "blake", "bmw512", "groestl", "skein", "jh512", "keccak", "luffa", "cube", NULL }; inline void swap8(uint8_t *a, uint8_t *b) { uint8_t t = *a; *a = *b; *b = t; } inline void initPerm(uint8_t n[], int count) { for (int i = 0; i < count; i++) n[i] = i; } static int nextPerm(uint8_t n[], int count) { int tail, i, j; if (count <= 1) return 0; for (i = count - 1; i>0 && n[i - 1] >= n[i]; i--); tail = i; if (tail > 0) { for (j = count - 1; j>tail && n[j] <= n[tail - 1]; j--); swap8(&n[tail - 1], &n[j]); } for (i = tail, j = count - 1; i= 10) sprintf(sptr, "%c", 'A' + (algoList[j] - 10)); else sprintf(sptr, "%u", (uint32_t) algoList[j]); sptr++; } *sptr = '\0'; } static __thread uint32_t s_ntime = 0; static uint32_t s_sequence = UINT32_MAX; static uint8_t s_firstalgo = 0xFF; static char hashOrder[HASH_FUNC_COUNT + 1] = { 0 }; #define INITIAL_DATE HASH_FUNC_BASE_TIMESTAMP static inline uint32_t getCurrentAlgoSeq(uint32_t ntime) { // unlike x11evo, the permutation changes often (with ntime) return (uint32_t) (ntime - INITIAL_DATE) % HASH_FUNC_COUNT_PERMUTATIONS; } // To finish... static void get_travel_order(uint32_t ntime, char *permstr) { uint32_t seq = getCurrentAlgoSeq(ntime); if (s_sequence != seq) { getAlgoString(permstr, seq); s_sequence = seq; } } // CPU Hash extern "C" void timetravel_hash(void *output, const void *input) { uint32_t _ALIGN(64) hash[64/4] = { 0 }; sph_blake512_context ctx_blake; sph_bmw512_context ctx_bmw; sph_groestl512_context ctx_groestl; sph_skein512_context ctx_skein; sph_jh512_context ctx_jh; sph_keccak512_context ctx_keccak; sph_luffa512_context ctx_luffa1; sph_cubehash512_context ctx_cubehash1; if (s_sequence == UINT32_MAX) { uint32_t *data = (uint32_t*) input; const uint32_t ntime = (opt_benchmark || !data[17]) ? (uint32_t) time(NULL) : data[17]; get_travel_order(ntime, hashOrder); } void *in = (void*) input; int size = 80; const int hashes = (int) strlen(hashOrder); for (int i = 0; i < hashes; i++) { const char elem = hashOrder[i]; uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0'; switch (algo) { case BLAKE: sph_blake512_init(&ctx_blake); sph_blake512(&ctx_blake, in, size); sph_blake512_close(&ctx_blake, hash); break; case BMW: sph_bmw512_init(&ctx_bmw); sph_bmw512(&ctx_bmw, in, size); sph_bmw512_close(&ctx_bmw, hash); break; case GROESTL: sph_groestl512_init(&ctx_groestl); sph_groestl512(&ctx_groestl, in, size); sph_groestl512_close(&ctx_groestl, hash); break; case SKEIN: sph_skein512_init(&ctx_skein); sph_skein512(&ctx_skein, in, size); sph_skein512_close(&ctx_skein, hash); break; case JH: sph_jh512_init(&ctx_jh); sph_jh512(&ctx_jh, in, size); sph_jh512_close(&ctx_jh, hash); break; case KECCAK: sph_keccak512_init(&ctx_keccak); sph_keccak512(&ctx_keccak, in, size); sph_keccak512_close(&ctx_keccak, hash); break; case LUFFA: sph_luffa512_init(&ctx_luffa1); sph_luffa512(&ctx_luffa1, in, size); sph_luffa512_close(&ctx_luffa1, hash); break; case CUBEHASH: sph_cubehash512_init(&ctx_cubehash1); sph_cubehash512(&ctx_cubehash1, in, size); sph_cubehash512_close(&ctx_cubehash1, hash); break; } in = (void*) hash; size = 64; } memcpy(output, hash, 32); } static uint32_t get_next_time(uint32_t ntime, char* curOrder) { char nextOrder[HASH_FUNC_COUNT + 1] = { 0 }; uint32_t secs = 15; do { uint32_t nseq = getCurrentAlgoSeq(ntime+secs); getAlgoString(nextOrder, nseq); secs += 15; } while (curOrder[0] == nextOrder[0]); return secs; } //#define _DEBUG #define _DEBUG_PREFIX "tt-" #include "cuda_debug.cuh" void quark_bmw512_cpu_setBlock_80(void *pdata); void quark_bmw512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int order); void groestl512_setBlock_80(int thr_id, uint32_t *endiandata); void groestl512_cuda_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNounce, uint32_t *d_hash); void skein512_cpu_setBlock_80(void *pdata); void skein512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int swap); void qubit_luffa512_cpu_init(int thr_id, uint32_t threads); void qubit_luffa512_cpu_setBlock_80(void *pdata); void qubit_luffa512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int order); void jh512_setBlock_80(int thr_id, uint32_t *endiandata); void jh512_cuda_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNounce, uint32_t *d_hash); void keccak512_setBlock_80(int thr_id, uint32_t *endiandata); void keccak512_cuda_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNounce, uint32_t *d_hash); void cubehash512_setBlock_80(int thr_id, uint32_t* endiandata); void cubehash512_cuda_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNounce, uint32_t *d_hash); void quark_blake512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order); static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_timetravel(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int intensity = (device_sm[device_map[thr_id]] >= 500 && !is_windows()) ? 20 : 19; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); // 19=256*256*8; if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); // if (opt_benchmark) pdata[17] = swab32(0x5886a4be); // TO DEBUG GROESTL 80 if (opt_debug || s_ntime != pdata[17] || s_sequence == UINT32_MAX) { uint32_t ntime = swab32(work->data[17]); get_travel_order(ntime, hashOrder); s_ntime = pdata[17]; if (opt_debug && !thr_id) { applog(LOG_DEBUG, "timetravel hash order %s (%08x)", hashOrder, ntime); } } if (opt_benchmark) ptarget[7] = 0x5; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); quark_blake512_cpu_init(thr_id, throughput); quark_bmw512_cpu_init(thr_id, throughput); quark_groestl512_cpu_init(thr_id, throughput); quark_skein512_cpu_init(thr_id, throughput); quark_keccak512_cpu_init(thr_id, throughput); quark_jh512_cpu_init(thr_id, throughput); qubit_luffa512_cpu_init(thr_id, throughput); // only constants (480 bytes) x11_luffa512_cpu_init(thr_id, throughput); x11_cubehash512_cpu_init(thr_id, throughput); CUDA_CALL_OR_RET_X(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput), -1); CUDA_CALL_OR_RET_X(cudaMemset(d_hash[thr_id], 0, (size_t) 64 * throughput), -1); cuda_check_cpu_init(thr_id, throughput); init[thr_id] = true; } uint32_t endiandata[20]; for (int k=0; k < 19; k++) be32enc(&endiandata[k], pdata[k]); cuda_check_cpu_setTarget(ptarget); const int hashes = (int) strlen(hashOrder); const char first = hashOrder[0]; const uint8_t algo80 = first >= 'A' ? first - 'A' + 10 : first - '0'; if (algo80 != s_firstalgo) { s_firstalgo = algo80; applog(LOG_INFO, "Timetravel first algo is now %s", algo_strings[algo80 % HASH_FUNC_COUNT]); } switch (algo80) { case BLAKE: quark_blake512_cpu_setBlock_80(thr_id, endiandata); break; case BMW: quark_bmw512_cpu_setBlock_80(endiandata); break; case GROESTL: groestl512_setBlock_80(thr_id, endiandata); break; case SKEIN: skein512_cpu_setBlock_80((void*)endiandata); break; case JH: jh512_setBlock_80(thr_id, endiandata); break; case KECCAK: keccak512_setBlock_80(thr_id, endiandata); break; case LUFFA: qubit_luffa512_cpu_setBlock_80((void*)endiandata); break; case CUBEHASH: cubehash512_setBlock_80(thr_id, endiandata); break; default: { uint32_t next = get_next_time(swab32(s_ntime), hashOrder); if (!thr_id) applog(LOG_WARNING, "kernel %c unimplemented, next in %u mn", first, next/60); sleep(next > 30 ? 60 : 10); return -1; } } do { int order = 0; // Hash with CUDA switch (algo80) { case BLAKE: quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); order++; TRACE("blake80:"); break; case BMW: quark_bmw512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); TRACE("bmw80 :"); break; case GROESTL: groestl512_cuda_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); order++; TRACE("grstl80:"); break; case SKEIN: skein512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], 1); order++; TRACE("skein80:"); break; case JH: jh512_cuda_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); order++; TRACE("jh51280:"); break; case KECCAK: keccak512_cuda_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); order++; TRACE("kecck80:"); break; case LUFFA: qubit_luffa512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); TRACE("luffa80:"); break; case CUBEHASH: cubehash512_cuda_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); order++; TRACE("cube 80:"); break; } for (int i = 1; i < hashes; i++) { const char elem = hashOrder[i]; const uint8_t algo64 = elem >= 'A' ? elem - 'A' + 10 : elem - '0'; switch (algo64) { case BLAKE: quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("blake :"); break; case BMW: quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("bmw :"); break; case GROESTL: quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("groestl:"); break; case SKEIN: quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("skein :"); break; case JH: quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("jh512 :"); break; case KECCAK: quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("keccak :"); break; case LUFFA: x11_luffa512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("luffa :"); break; case CUBEHASH: x11_cubehash512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("cube :"); break; } } *hashes_done = pdata[19] - first_nonce + throughput; work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]); if (work->nonces[0] != UINT32_MAX) { uint32_t _ALIGN(64) vhash[8]; const uint32_t Htarg = ptarget[7]; be32enc(&endiandata[19], work->nonces[0]); timetravel_hash(vhash, endiandata); if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhash); work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1); pdata[19] = work->nonces[0]; if (work->nonces[1] != 0) { be32enc(&endiandata[19], work->nonces[1]); timetravel_hash(vhash, endiandata); if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) { bn_set_target_ratio(work, vhash, 1); work->valid_nonces++; } pdata[19] = max(pdata[19], work->nonces[1]) + 1; } return work->valid_nonces; } else if (vhash[7] > Htarg) { gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); pdata[19] = work->nonces[0] + 1; continue; } } if ((uint64_t) throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; return 0; } // cleanup extern "C" void free_timetravel(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); quark_blake512_cpu_free(thr_id); quark_groestl512_cpu_free(thr_id); cuda_check_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }