extern "C" { #include "sph/sph_blake.h" #include "sph/sph_bmw.h" #include "sph/sph_cubehash.h" #include "lyra2/Lyra2.h" } #include #include static uint64_t *d_hash[MAX_GPUS]; static uint64_t* d_matrix[MAX_GPUS]; extern void blake256_cpu_init(int thr_id, uint32_t threads); extern void blake256_cpu_setBlock_80(uint32_t *pdata); extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order); extern void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order); extern void lyra2v3_setTarget(const void *pTargetIn); extern void lyra2v3_cpu_init(int thr_id, uint32_t threads, uint64_t* d_matrix); extern void lyra2v3_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void lyra2v3_cpu_hash_32_targ(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces); extern void bmw256_setTarget(const void *ptarget); extern void bmw256_cpu_init(int thr_id, uint32_t threads); extern void bmw256_cpu_free(int thr_id); extern void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces); extern "C" void lyra2v3_hash(void *state, const void *input) { uint32_t hashA[8], hashB[8]; sph_blake256_context ctx_blake; sph_cubehash256_context ctx_cube; sph_bmw256_context ctx_bmw; sph_blake256_set_rounds(14); sph_blake256_init(&ctx_blake); sph_blake256(&ctx_blake, input, 80); sph_blake256_close(&ctx_blake, hashA); LYRA2_3(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4); sph_cubehash256_init(&ctx_cube); sph_cubehash256(&ctx_cube, hashB, 32); sph_cubehash256_close(&ctx_cube, hashA); LYRA2_3(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4); sph_bmw256_init(&ctx_bmw); sph_bmw256(&ctx_bmw, hashB, 32); sph_bmw256_close(&ctx_bmw, hashA); memcpy(state, hashA, 32); } static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_lyra2v3(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int dev_id = device_map[thr_id]; int intensity = (device_sm[dev_id] < 500) ? 18 : is_windows() ? 19 : 20; if (strstr(device_name[dev_id], "GTX 1")) intensity = 20; if (strstr(device_name[dev_id], "RTX 20")) intensity = 20; uint32_t throughput = cuda_default_throughput(dev_id, 1UL << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ptarget[7] = 0x000f; if (!init[thr_id]) { size_t matrix_sz = 16 * sizeof(uint64_t) * 4 * 3; cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); blake256_cpu_init(thr_id, throughput); bmw256_cpu_init(thr_id, throughput); cuda_get_arch(thr_id); // cuda_arch[] also used in cubehash256 // SM 3 implentation requires a bit more memory if (device_sm[dev_id] < 500 || cuda_arch[dev_id] < 500) matrix_sz = 16 * sizeof(uint64_t) * 4 * 4; CUDA_SAFE_CALL(cudaMalloc(&d_matrix[thr_id], matrix_sz * throughput)); lyra2v3_cpu_init(thr_id, throughput, d_matrix[thr_id]); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput)); api_set_throughput(thr_id, throughput); init[thr_id] = true; } uint32_t endiandata[20]; for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); blake256_cpu_setBlock_80(pdata); bmw256_setTarget(ptarget); do { int order = 0; blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); lyra2v3_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); cubehash256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); lyra2v3_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); memset(work->nonces, 0, sizeof(work->nonces)); bmw256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], work->nonces); *hashes_done = pdata[19] - first_nonce + throughput; if (work->nonces[0] != 0) { const uint32_t Htarg = ptarget[7]; uint32_t _ALIGN(64) vhash[8]; be32enc(&endiandata[19], work->nonces[0]); lyra2v3_hash(vhash, endiandata); if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhash); if (work->nonces[1] != 0) { be32enc(&endiandata[19], work->nonces[1]); lyra2v3_hash(vhash, endiandata); bn_set_target_ratio(work, vhash, 1); work->valid_nonces++; pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; } else { pdata[19] = work->nonces[0] + 1; // cursor } return work->valid_nonces; } else if (vhash[7] > Htarg) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); pdata[19] = work->nonces[0] + 1; continue; } } if ((uint64_t)throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart && !abort_flag); *hashes_done = pdata[19] - first_nonce; return 0; } // cleanup extern "C" void free_lyra2v3(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); cudaFree(d_matrix[thr_id]); init[thr_id] = false; cudaDeviceSynchronize(); }