/** * Lyra2 (v3) CUDA Implementation * * Based on VTC sources */ #include #include #include #include "cuda_helper.h" #include "cuda_lyra2v3_sm3.cuh" #ifdef __INTELLISENSE__ /* just for vstudio code colors */ #define __CUDA_ARCH__ 500 #endif #define TPB 32 #if __CUDA_ARCH__ >= 500 #include "cuda_lyra2_vectors.h" #define Nrow 4 #define Ncol 4 #define memshift 3 __device__ uint2x4 *DMatrix; __device__ __forceinline__ uint2 LD4S(const int index) { extern __shared__ uint2 shared_mem[]; return shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; } __device__ __forceinline__ void ST4S(const int index, const uint2 data) { extern __shared__ uint2 shared_mem[]; shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data; } __device__ __forceinline__ uint2 shuffle2(uint2 a, uint32_t b, uint32_t c) { return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c)); } __device__ __forceinline__ void Gfunc_v5(uint2 &a, uint2 &b, uint2 &c, uint2 &d) { a += b; d ^= a; d = SWAPUINT2(d); c += d; b ^= c; b = ROR2(b, 24); a += b; d ^= a; d = ROR2(d, 16); c += d; b ^= c; b = ROR2(b, 63); } __device__ __forceinline__ void round_lyra_v5(uint2x4 s[4]) { Gfunc_v5(s[0].x, s[1].x, s[2].x, s[3].x); Gfunc_v5(s[0].y, s[1].y, s[2].y, s[3].y); Gfunc_v5(s[0].z, s[1].z, s[2].z, s[3].z); Gfunc_v5(s[0].w, s[1].w, s[2].w, s[3].w); Gfunc_v5(s[0].x, s[1].y, s[2].z, s[3].w); Gfunc_v5(s[0].y, s[1].z, s[2].w, s[3].x); Gfunc_v5(s[0].z, s[1].w, s[2].x, s[3].y); Gfunc_v5(s[0].w, s[1].x, s[2].y, s[3].z); } __device__ __forceinline__ void round_lyra_v5(uint2 s[4]) { Gfunc_v5(s[0], s[1], s[2], s[3]); s[1] = shuffle2(s[1], threadIdx.x + 1, 4); s[2] = shuffle2(s[2], threadIdx.x + 2, 4); s[3] = shuffle2(s[3], threadIdx.x + 3, 4); Gfunc_v5(s[0], s[1], s[2], s[3]); s[1] = shuffle2(s[1], threadIdx.x + 3, 4); s[2] = shuffle2(s[2], threadIdx.x + 2, 4); s[3] = shuffle2(s[3], threadIdx.x + 1, 4); } __device__ __forceinline__ void reduceDuplexRowSetup2(uint2 state[4]) { uint2 state1[Ncol][3], state0[Ncol][3], state2[3]; int i, j; #pragma unroll for (int i = 0; i < Ncol; i++) { #pragma unroll for (j = 0; j < 3; j++) state0[Ncol - i - 1][j] = state[j]; round_lyra_v5(state); } //#pragma unroll 4 for (i = 0; i < Ncol; i++) { #pragma unroll for (j = 0; j < 3; j++) state[j] ^= state0[i][j]; round_lyra_v5(state); #pragma unroll for (j = 0; j < 3; j++) state1[Ncol - i - 1][j] = state0[i][j]; #pragma unroll for (j = 0; j < 3; j++) state1[Ncol - i - 1][j] ^= state[j]; } for (i = 0; i < Ncol; i++) { const uint32_t s0 = memshift * Ncol * 0 + i * memshift; const uint32_t s2 = memshift * Ncol * 2 + memshift * (Ncol - 1) - i*memshift; #pragma unroll for (j = 0; j < 3; j++) state[j] ^= state1[i][j] + state0[i][j]; round_lyra_v5(state); #pragma unroll for (j = 0; j < 3; j++) state2[j] = state1[i][j]; #pragma unroll for (j = 0; j < 3; j++) state2[j] ^= state[j]; #pragma unroll for (j = 0; j < 3; j++) ST4S(s2 + j, state2[j]); uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); if (threadIdx.x == 0) { state0[i][0] ^= Data2; state0[i][1] ^= Data0; state0[i][2] ^= Data1; } else { state0[i][0] ^= Data0; state0[i][1] ^= Data1; state0[i][2] ^= Data2; } #pragma unroll for (j = 0; j < 3; j++) ST4S(s0 + j, state0[i][j]); #pragma unroll for (j = 0; j < 3; j++) state0[i][j] = state2[j]; } for (i = 0; i < Ncol; i++) { const uint32_t s1 = memshift * Ncol * 1 + i*memshift; const uint32_t s3 = memshift * Ncol * 3 + memshift * (Ncol - 1) - i*memshift; #pragma unroll for (j = 0; j < 3; j++) state[j] ^= state1[i][j] + state0[Ncol - i - 1][j]; round_lyra_v5(state); #pragma unroll for (j = 0; j < 3; j++) state0[Ncol - i - 1][j] ^= state[j]; #pragma unroll for (j = 0; j < 3; j++) ST4S(s3 + j, state0[Ncol - i - 1][j]); uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); if (threadIdx.x == 0) { state1[i][0] ^= Data2; state1[i][1] ^= Data0; state1[i][2] ^= Data1; } else { state1[i][0] ^= Data0; state1[i][1] ^= Data1; state1[i][2] ^= Data2; } #pragma unroll for (j = 0; j < 3; j++) ST4S(s1 + j, state1[i][j]); } } __device__ void reduceDuplexRowt2(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4]) { uint2 state1[3], state2[3]; const uint32_t ps1 = memshift * Ncol * rowIn; const uint32_t ps2 = memshift * Ncol * rowInOut; const uint32_t ps3 = memshift * Ncol * rowOut; for (int i = 0; i < Ncol; i++) { const uint32_t s1 = ps1 + i*memshift; const uint32_t s2 = ps2 + i*memshift; const uint32_t s3 = ps3 + i*memshift; #pragma unroll for (int j = 0; j < 3; j++) state1[j] = LD4S(s1 + j); #pragma unroll for (int j = 0; j < 3; j++) state2[j] = LD4S(s2 + j); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra_v5(state); uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } #pragma unroll for (int j = 0; j < 3; j++) ST4S(s2 + j, state2[j]); #pragma unroll for (int j = 0; j < 3; j++) ST4S(s3 + j, LD4S(s3 + j) ^ state[j]); } } __device__ void reduceDuplexRowt2x4(const int rowInOut, uint2 state[4]) { const int rowIn = 2; const int rowOut = 3; int i, j; uint2 last[3]; const uint32_t ps1 = memshift * Ncol * rowIn; const uint32_t ps2 = memshift * Ncol * rowInOut; #pragma unroll for (int j = 0; j < 3; j++) last[j] = LD4S(ps2 + j); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= LD4S(ps1 + j) + last[j]; round_lyra_v5(state); uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); if (threadIdx.x == 0) { last[0] ^= Data2; last[1] ^= Data0; last[2] ^= Data1; } else { last[0] ^= Data0; last[1] ^= Data1; last[2] ^= Data2; } if (rowInOut == rowOut) { #pragma unroll for (j = 0; j < 3; j++) last[j] ^= state[j]; } for (i = 1; i < Ncol; i++) { const uint32_t s1 = ps1 + i*memshift; const uint32_t s2 = ps2 + i*memshift; #pragma unroll for (j = 0; j < 3; j++) state[j] ^= LD4S(s1 + j) + LD4S(s2 + j); round_lyra_v5(state); } #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= last[j]; } __global__ __launch_bounds__(TPB, 1) void lyra2v3_gpu_hash_32_1(uint32_t threads, uint2 *inputHash) { const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; const uint2x4 blake2b_IV[2] = { 0xf3bcc908UL, 0x6a09e667UL, 0x84caa73bUL, 0xbb67ae85UL, 0xfe94f82bUL, 0x3c6ef372UL, 0x5f1d36f1UL, 0xa54ff53aUL, 0xade682d1UL, 0x510e527fUL, 0x2b3e6c1fUL, 0x9b05688cUL, 0xfb41bd6bUL, 0x1f83d9abUL, 0x137e2179UL, 0x5be0cd19UL }; const uint2x4 Mask[2] = { 0x00000020UL, 0x00000000UL, 0x00000020UL, 0x00000000UL, 0x00000020UL, 0x00000000UL, 0x00000001UL, 0x00000000UL, 0x00000004UL, 0x00000000UL, 0x00000004UL, 0x00000000UL, 0x00000080UL, 0x00000000UL, 0x00000000UL, 0x01000000UL }; uint2x4 state[4]; if (thread < threads) { state[0].x = state[1].x = __ldg(&inputHash[thread + threads * 0]); state[0].y = state[1].y = __ldg(&inputHash[thread + threads * 1]); state[0].z = state[1].z = __ldg(&inputHash[thread + threads * 2]); state[0].w = state[1].w = __ldg(&inputHash[thread + threads * 3]); state[2] = blake2b_IV[0]; state[3] = blake2b_IV[1]; for (int i = 0; i<12; i++) round_lyra_v5(state); state[0] ^= Mask[0]; state[1] ^= Mask[1]; for (int i = 0; i<12; i++) round_lyra_v5(state); DMatrix[blockDim.x * gridDim.x * 0 + thread] = state[0]; DMatrix[blockDim.x * gridDim.x * 1 + thread] = state[1]; DMatrix[blockDim.x * gridDim.x * 2 + thread] = state[2]; DMatrix[blockDim.x * gridDim.x * 3 + thread] = state[3]; } } __global__ __launch_bounds__(TPB, 1) void lyra2v3_gpu_hash_32_2(uint32_t threads) { const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y; if (thread < threads) { uint2 state[4]; state[0] = ((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; state[1] = ((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; state[2] = ((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; state[3] = ((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; reduceDuplexRowSetup2(state); uint32_t rowa; int prev = 3; unsigned int instance = 0; for (int i = 0; i < 3; i++) { instance = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4); rowa = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4) & 0x3; //rowa = __shfl(state[0].x, 0, 4) & 3; reduceDuplexRowt2(prev, rowa, i, state); prev = i; } instance = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4); rowa = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4) & 0x3; //rowa = __shfl(state[0].x, 0, 4) & 3; reduceDuplexRowt2x4(rowa, state); ((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[0]; ((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[1]; ((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[2]; ((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[3]; } } __global__ __launch_bounds__(TPB, 1) void lyra2v3_gpu_hash_32_3(uint32_t threads, uint2 *outputHash) { const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; uint2x4 state[4]; if (thread < threads) { state[0] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 0 + thread]); state[1] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 1 + thread]); state[2] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 2 + thread]); state[3] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 3 + thread]); for (int i = 0; i < 12; i++) round_lyra_v5(state); outputHash[thread + threads * 0] = state[0].x; outputHash[thread + threads * 1] = state[0].y; outputHash[thread + threads * 2] = state[0].z; outputHash[thread + threads * 3] = state[0].w; } } #else #include "cuda_helper.h" #if __CUDA_ARCH__ < 200 __device__ void* DMatrix; #endif __global__ void lyra2v3_gpu_hash_32_1(uint32_t threads, uint2 *inputHash) {} __global__ void lyra2v3_gpu_hash_32_2(uint32_t threads) {} __global__ void lyra2v3_gpu_hash_32_3(uint32_t threads, uint2 *outputHash) {} #endif __host__ void lyra2v3_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix) { cuda_get_arch(thr_id); // just assign the device pointer allocated in main loop cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice); } __host__ void lyra2v3_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, int order) { int dev_id = device_map[thr_id % MAX_GPUS]; if (device_sm[dev_id] >= 500) { const uint32_t tpb = TPB; dim3 grid2((threads + tpb - 1) / tpb); dim3 block2(tpb); dim3 grid4((threads * 4 + tpb - 1) / tpb); dim3 block4(4, tpb / 4); lyra2v3_gpu_hash_32_1 <<< grid2, block2 >>> (threads, (uint2*)g_hash); lyra2v3_gpu_hash_32_2 <<< grid4, block4, 48 * sizeof(uint2) * tpb >>> (threads); lyra2v3_gpu_hash_32_3 <<< grid2, block2 >>> (threads, (uint2*)g_hash); } else { uint32_t tpb = 16; if (cuda_arch[dev_id] >= 350) tpb = TPB35; else if (cuda_arch[dev_id] >= 300) tpb = TPB30; else if (cuda_arch[dev_id] >= 200) tpb = TPB20; dim3 grid((threads + tpb - 1) / tpb); dim3 block(tpb); lyra2v3_gpu_hash_32_v3 <<< grid, block >>> (threads, startNounce, (uint2*)g_hash); } }