/** * Implementation of the Lyra2 Password Hashing Scheme (PHS). * * Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014. * * This software is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "Lyra2.h" #include "Sponge.h" /** * Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords * whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits, * where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all * integer parameters (treated as type "unsigned int") in the order they are provided, plus the value * of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols). * * @param K The derived key to be output by the algorithm * @param kLen Desired key length * @param pwd User password * @param pwdlen Password length * @param salt Salt * @param saltlen Salt length * @param timeCost Parameter to determine the processing time (T) * @param nRows Number or rows of the memory matrix (R) * @param nCols Number of columns of the memory matrix (C) * * @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation) */ int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols) { //============================= Basic variables ============================// int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 int64_t i; //auxiliary iteration counter int64_t v64; // 64bit var for memcpy //==========================================================================/ //========== Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; // for Lyra2REv2, nCols = 4, v1 was using 8 const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES; size_t sz = (size_t)ROW_LEN_BYTES * nRows; uint64_t *wholeMatrix = malloc(sz); if (wholeMatrix == NULL) { return -1; } memset(wholeMatrix, 0, sz); //Allocates pointers to each row of the matrix uint64_t **memMatrix = malloc(sizeof(uint64_t*) * nRows); if (memMatrix == NULL) { return -1; } //Places the pointers in the correct positions uint64_t *ptrWord = wholeMatrix; for (i = 0; i < nRows; i++) { memMatrix[i] = ptrWord; ptrWord += ROW_LEN_INT64; } //==========================================================================/ //============= Getting the password + salt + basil padded with 10*1 ===============// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding int64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof(uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1; byte *ptrByte = (byte*) wholeMatrix; //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; memset(ptrByte, 0, (size_t) (nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen))); //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = pwdlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = saltlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = timeCost; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nRows; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nCols; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block //==========================================================================/ //======================= Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) uint64_t state[16]; initState(state); //==========================================================================/ //================================ Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits ptrWord = wholeMatrix; for (i = 0; i < nBlocksInput; i++) { absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil) } //Initializes M[0] and M[1] reducedSqueezeRow0(state, memMatrix[0], nCols); //The locally copied password is most likely overwritten here reducedDuplexRow1(state, memMatrix[0], memMatrix[1], nCols); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //==========================================================================/ //============================ Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for (tau = 1; tau <= timeCost; tau++) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; do { //Selects a pseudorandom index row* //------------------------------------------------------------------------------------------ rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------------------------------------------------------ //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //------------------------------------------------------------------------------------------ row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------------------------------------------------------ } while (row != 0); } //============================ Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, memMatrix[rowa]); //Squeezes the key squeeze(state, K, (unsigned int) kLen); //========================= Freeing the memory =============================// free(memMatrix); free(wholeMatrix); return 0; } int LYRA2_3(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols) { //============================= Basic variables ============================// int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 int64_t i; //auxiliary iteration counter int64_t v64; // 64bit var for memcpy uint64_t instance = 0; //==========================================================================/ //========== Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols; const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8; // for Lyra2REv2, nCols = 4, v1 was using 8 const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES; size_t sz = (size_t)ROW_LEN_BYTES * nRows; uint64_t *wholeMatrix = malloc(sz); if (wholeMatrix == NULL) { return -1; } memset(wholeMatrix, 0, sz); //Allocates pointers to each row of the matrix uint64_t **memMatrix = malloc(sizeof(uint64_t*) * nRows); if (memMatrix == NULL) { return -1; } //Places the pointers in the correct positions uint64_t *ptrWord = wholeMatrix; for (i = 0; i < nRows; i++) { memMatrix[i] = ptrWord; ptrWord += ROW_LEN_INT64; } //==========================================================================/ //============= Getting the password + salt + basil padded with 10*1 ===============// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding int64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof(uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1; byte *ptrByte = (byte*) wholeMatrix; //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; memset(ptrByte, 0, (size_t) (nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen))); //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = pwdlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = saltlen; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = timeCost; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nRows; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); v64 = nCols; memcpy(ptrByte, &v64, sizeof(int64_t)); ptrByte += sizeof(uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block //==========================================================================/ //======================= Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) uint64_t state[16]; initState(state); //==========================================================================/ //================================ Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits ptrWord = wholeMatrix; for (i = 0; i < nBlocksInput; i++) { absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil) } //Initializes M[0] and M[1] reducedSqueezeRow0(state, memMatrix[0], nCols); //The locally copied password is most likely overwritten here reducedDuplexRow1(state, memMatrix[0], memMatrix[1], nCols); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //==========================================================================/ //============================ Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for (tau = 1; tau <= timeCost; tau++) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = ((tau & 1) == 0) ? -1 : (nRows >> 1) - 1; do { //Selects a pseudorandom index row* (the only change in REv3) //------------------------------------------------------------------------------------------ instance = state[instance & 0xF]; rowa = state[instance & 0xF] & (unsigned int)(nRows-1); //rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------------------------------------------------------ //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //------------------------------------------------------------------------------------------ row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2) //row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------------------------------------------------------ } while (row != 0); } //============================ Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, memMatrix[rowa]); //Squeezes the key squeeze(state, K, (unsigned int) kLen); //========================= Freeing the memory =============================// free(memMatrix); free(wholeMatrix); return 0; }