#include #include #include #include #ifndef _WIN32 #include #endif #include #include #if CUDA_VERSION >= 9000 && __CUDA_ARCH__ >= 300 #undef __shfl #define __shfl(var, srcLane, width) __shfl_sync(0xFFFFFFFFu, var, srcLane, width) #endif #include "cryptonight.h" #define LONG_SHL32 19 // 1<<19 (uint32_t* index) #define LONG_SHL64 18 // 1<<18 (uint64_t* index) #define LONG_LOOPS32 0x80000U #include "cn_aes.cuh" __global__ void cryptonight_gpu_phase1(const uint32_t threads, uint32_t * __restrict__ d_long_state, uint32_t * __restrict__ ctx_state, uint32_t * __restrict__ ctx_key1) { __shared__ uint32_t sharedMemory[1024]; const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 3; if(thread < threads) { cn_aes_gpu_init(sharedMemory); __syncthreads(); const uint32_t sub = (threadIdx.x & 0x7U) << 2; uint32_t *longstate = &d_long_state[(thread << LONG_SHL32) + sub]; uint32_t __align__(8) key[40]; MEMCPY8(key, &ctx_key1[thread * 40U], 20); uint32_t __align__(8) text[4]; MEMCPY8(text, &ctx_state[thread * 50U + sub + 16U], 2); for(int i = 0; i < LONG_LOOPS32; i += 32) { cn_aes_pseudo_round_mut(sharedMemory, text, key); MEMCPY8(&longstate[i], text, 2); } } } // -------------------------------------------------------------------------------------------------------------- __device__ __forceinline__ ulonglong2 cuda_mul128(const uint64_t multiplier, const uint64_t multiplicand) { ulonglong2 product; product.x = __umul64hi(multiplier, multiplicand); product.y = multiplier * multiplicand; return product; } static __forceinline__ __device__ void operator += (ulonglong2 &a, const ulonglong2 b) { a.x += b.x; a.y += b.y; } static __forceinline__ __device__ ulonglong2 operator ^ (const ulonglong2 &a, const ulonglong2 &b) { return make_ulonglong2(a.x ^ b.x, a.y ^ b.y); } __device__ __forceinline__ void MUL_SUM_XOR_DST_0(const uint64_t m, uint4 &a, void* far_dst) { ulonglong2 d = AS_UL2(far_dst); ulonglong2 p = cuda_mul128(m, d.x); p += AS_UL2(&a); AS_UL2(&a) = p ^ d; AS_UL2(far_dst) = p; } __global__ #if __CUDA_ARCH__ >= 500 //__launch_bounds__(128,12) /* force 40 regs to allow -l ...x32 */ #endif void cryptonight_gpu_phase2(const uint32_t threads, const uint16_t bfactor, const uint32_t partidx, uint64_t * __restrict__ d_long_state, uint32_t * __restrict__ d_ctx_a, uint32_t * __restrict__ d_ctx_b) { __shared__ __align__(16) uint32_t sharedMemory[1024]; cn_aes_gpu_init(sharedMemory); __syncthreads(); const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; if (thread < threads) { const uint32_t batchsize = ITER >> (2 + bfactor); const uint32_t start = partidx * batchsize; const uint32_t end = start + batchsize; void * ctx_a = (void*)(&d_ctx_a[thread << 2U]); void * ctx_b = (void*)(&d_ctx_b[thread << 2U]); uint4 A = AS_UINT4(ctx_a); // ld.global.u32.v4 uint4 B = AS_UINT4(ctx_b); uint64_t * long_state = &d_long_state[thread << LONG_SHL64]; for (int i = start; i < end; i++) // end = 262144 { uint4 C; uint32_t j = (A.x & E2I_MASK) >> 3; cn_aes_single_round_b((uint8_t*)sharedMemory, &long_state[j], A, &C); AS_UINT4(&long_state[j]) = C ^ B; // st.global.u32.v4 MUL_SUM_XOR_DST_0((AS_UL2(&C)).x, A, &long_state[(C.x & E2I_MASK) >> 3]); j = (A.x & E2I_MASK) >> 3; cn_aes_single_round_b((uint8_t*)sharedMemory, &long_state[j], A, &B); AS_UINT4(&long_state[j]) = C ^ B; MUL_SUM_XOR_DST_0((AS_UL2(&B)).x, A, &long_state[(B.x & E2I_MASK) >> 3]); } if (bfactor) { AS_UINT4(ctx_a) = A; AS_UINT4(ctx_b) = B; } } } // -------------------------------------------------------------------------------------------------------------- __device__ __forceinline__ void store_variant1(uint64_t* long_state, uint4 Z) { const uint32_t tmp = (Z.z >> 24); // __byte_perm(src, 0, 0x7773); const uint32_t index = (((tmp >> 3) & 6u) | (tmp & 1u)) << 1; Z.z = (Z.z & 0x00ffffffu) | ((tmp ^ ((0x75310u >> index) & 0x30u)) << 24); AS_UINT4(long_state) = Z; } __device__ __forceinline__ void store_variant2(uint64_t* long_state, uint4 Z) { const uint32_t tmp = (Z.z >> 24); // __byte_perm(src, 0, 0x7773); const uint32_t index = (((tmp >> 4) & 6u) | (tmp & 1u)) << 1; Z.z = (Z.z & 0x00ffffffu) | ((tmp ^ ((0x75312u >> index) & 0x30u)) << 24); AS_UINT4(long_state) = Z; } __device__ __forceinline__ void MUL_SUM_XOR_DST_1(const uint64_t m, uint4 &a, void* far_dst, uint64_t tweak) { ulonglong2 d = AS_UL2(far_dst); ulonglong2 p = cuda_mul128(m, d.x); p += AS_UL2(&a); AS_UL2(&a) = p ^ d; p.y = p.y ^ tweak; AS_UL2(far_dst) = p; } __global__ void monero_gpu_phase2(const uint32_t threads, const uint16_t bfactor, const uint32_t partidx, uint64_t * __restrict__ d_long_state, uint32_t * __restrict__ d_ctx_a, uint32_t * __restrict__ d_ctx_b, uint64_t * __restrict__ d_tweak) { __shared__ __align__(16) uint32_t sharedMemory[1024]; cn_aes_gpu_init(sharedMemory); __syncthreads(); const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; if (thread < threads) { const uint32_t batchsize = ITER >> (2 + bfactor); const uint32_t start = partidx * batchsize; const uint32_t end = start + batchsize; uint64_t tweak = d_tweak[thread]; void * ctx_a = (void*)(&d_ctx_a[thread << 2]); void * ctx_b = (void*)(&d_ctx_b[thread << 2]); uint4 A = AS_UINT4(ctx_a); // ld.global.u32.v4 uint4 B = AS_UINT4(ctx_b); uint64_t * long_state = &d_long_state[thread << LONG_SHL64]; for (int i = start; i < end; i++) // end = 262144 { uint4 C; uint32_t j = (A.x & E2I_MASK) >> 3; cn_aes_single_round_b((uint8_t*)sharedMemory, &long_state[j], A, &C); store_variant1(&long_state[j], C ^ B); // st.global MUL_SUM_XOR_DST_1((AS_UL2(&C)).x, A, &long_state[(C.x & E2I_MASK) >> 3], tweak); j = (A.x & E2I_MASK) >> 3; cn_aes_single_round_b((uint8_t*)sharedMemory, &long_state[j], A, &B); store_variant1(&long_state[j], C ^ B); MUL_SUM_XOR_DST_1((AS_UL2(&B)).x, A, &long_state[(B.x & E2I_MASK) >> 3], tweak); } if (bfactor) { AS_UINT4(ctx_a) = A; AS_UINT4(ctx_b) = B; } } } // -------------------------------------------------------------------------------------------------------------- __global__ void stellite_gpu_phase2(const uint32_t threads, const uint16_t bfactor, const uint32_t partidx, uint64_t * __restrict__ d_long_state, uint32_t * __restrict__ d_ctx_a, uint32_t * __restrict__ d_ctx_b, uint64_t * __restrict__ d_tweak) { __shared__ __align__(16) uint32_t sharedMemory[1024]; cn_aes_gpu_init(sharedMemory); __syncthreads(); const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; if (thread < threads) { const uint32_t batchsize = ITER >> (2 + bfactor); const uint32_t start = partidx * batchsize; const uint32_t end = start + batchsize; uint64_t tweak = d_tweak[thread]; void * ctx_a = (void*)(&d_ctx_a[thread << 2]); void * ctx_b = (void*)(&d_ctx_b[thread << 2]); uint4 A = AS_UINT4(ctx_a); // ld.global.u32.v4 uint4 B = AS_UINT4(ctx_b); uint64_t * long_state = &d_long_state[thread << LONG_SHL64]; for (int i = start; i < end; i++) // end = 262144 { uint4 C; uint32_t j = (A.x & E2I_MASK) >> 3; cn_aes_single_round_b((uint8_t*)sharedMemory, &long_state[j], A, &C); store_variant2(&long_state[j], C ^ B); // st.global MUL_SUM_XOR_DST_1((AS_UL2(&C)).x, A, &long_state[(C.x & E2I_MASK) >> 3], tweak); j = (A.x & E2I_MASK) >> 3; cn_aes_single_round_b((uint8_t*)sharedMemory, &long_state[j], A, &B); store_variant2(&long_state[j], C ^ B); MUL_SUM_XOR_DST_1((AS_UL2(&B)).x, A, &long_state[(B.x & E2I_MASK) >> 3], tweak); } if (bfactor) { AS_UINT4(ctx_a) = A; AS_UINT4(ctx_b) = B; } } } // -------------------------------------------------------------------------------------------------------------- __global__ void cryptonight_gpu_phase3(const uint32_t threads, const uint32_t * __restrict__ d_long_state, uint32_t * __restrict__ d_ctx_state, const uint32_t * __restrict__ d_ctx_key2) { __shared__ uint32_t sharedMemory[1024]; cn_aes_gpu_init(sharedMemory); __syncthreads(); const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 3; if(thread < threads) { const int sub = (threadIdx.x & 7) << 2; const uint32_t *longstate = &d_long_state[(thread << LONG_SHL32) + sub]; uint32_t key[40], text[4]; MEMCPY8(key, d_ctx_key2 + thread * 40, 20); MEMCPY8(text, d_ctx_state + thread * 50 + sub + 16, 2); for(int i = 0; i < LONG_LOOPS32; i += 32) { #pragma unroll for(int j = 0; j < 4; ++j) text[j] ^= longstate[i + j]; cn_aes_pseudo_round_mut(sharedMemory, text, key); } MEMCPY8(d_ctx_state + thread * 50 + sub + 16, text, 2); } } // -------------------------------------------------------------------------------------------------------------- extern int device_bfactor[MAX_GPUS]; __host__ void cryptonight_core_cuda(int thr_id, uint32_t blocks, uint32_t threads, uint64_t *d_long_state, uint32_t *d_ctx_state, uint32_t *d_ctx_a, uint32_t *d_ctx_b, uint32_t *d_ctx_key1, uint32_t *d_ctx_key2, int variant, uint64_t *d_ctx_tweak) { dim3 grid(blocks); dim3 block(threads); dim3 block4(threads << 2); dim3 block8(threads << 3); const uint16_t bfactor = (uint16_t) device_bfactor[thr_id]; const uint32_t partcount = 1U << bfactor; const uint32_t throughput = (uint32_t) (blocks*threads); const int bsleep = bfactor ? 100 : 0; const int dev_id = device_map[thr_id]; cryptonight_gpu_phase1 <<>> (throughput, (uint32_t*) d_long_state, d_ctx_state, d_ctx_key1); exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); if(partcount > 1) usleep(bsleep); for (uint32_t i = 0; i < partcount; i++) { dim3 b = device_sm[dev_id] >= 300 ? block4 : block; if (variant == 0) cryptonight_gpu_phase2 <<>> (throughput, bfactor, i, d_long_state, d_ctx_a, d_ctx_b); else if (variant == 1 || cryptonight_fork == 8) monero_gpu_phase2 <<>> (throughput, bfactor, i, d_long_state, d_ctx_a, d_ctx_b, d_ctx_tweak); else if (variant == 2 && cryptonight_fork == 3) stellite_gpu_phase2 <<>> (throughput, bfactor, i, d_long_state, d_ctx_a, d_ctx_b, d_ctx_tweak); exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); if(partcount > 1) usleep(bsleep); } //cudaDeviceSynchronize(); //exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); cryptonight_gpu_phase3 <<>> (throughput, (uint32_t*) d_long_state, d_ctx_state, d_ctx_key2); exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__); }