/** * Blake-256 Decred 180-Bytes input Cuda Kernel (Tested on SM 5/5.2) * * Tanguy Pruvot - Feb 2016 */ #include <stdint.h> #include <memory.h> #include <miner.h> extern "C" { #include <sph/sph_blake.h> } /* threads per block */ #define TPB 256 /* hash by cpu with blake 256 */ extern "C" void decred_hash(void *output, const void *input) { sph_blake256_context ctx; sph_blake256_set_rounds(14); sph_blake256_init(&ctx); sph_blake256(&ctx, input, 180); sph_blake256_close(&ctx, output); } #include <cuda_helper.h> #ifdef __INTELLISENSE__ #define __byte_perm(x, y, b) x #endif __constant__ uint32_t _ALIGN(4) d_data[24]; /* 16 adapters max */ static uint32_t *d_resNonce[MAX_GPUS]; static uint32_t *h_resNonce[MAX_GPUS]; /* max count of found nonces in one call */ #define NBN 2 #if NBN > 1 static uint32_t extra_results[NBN] = { UINT32_MAX }; #endif /* ############################################################################################################################### */ #define GSPREC(a,b,c,d,x,y) { \ v[a] += (m[x] ^ c_u256[y]) + v[b]; \ v[d] = __byte_perm(v[d] ^ v[a], 0, 0x1032); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \ v[a] += (m[y] ^ c_u256[x]) + v[b]; \ v[d] = __byte_perm(v[d] ^ v[a], 0, 0x0321); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \ } __device__ __forceinline__ void blake256_compress_14(uint32_t *h, const uint32_t nonce, const uint32_t T0) { uint32_t v[16]; #pragma unroll 8 for(uint32_t i = 0; i < 8; i++) v[i] = h[i]; const uint32_t c_u256[16] = { 0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, 0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 }; v[ 8] = c_u256[0]; v[ 9] = c_u256[1]; v[10] = c_u256[2]; v[11] = c_u256[3]; v[12] = c_u256[4] ^ T0; v[13] = c_u256[5] ^ T0; v[14] = c_u256[6]; v[15] = c_u256[7]; uint32_t m[16]; m[0] = d_data[8]; m[1] = d_data[9]; m[2] = d_data[10]; m[3] = nonce; #pragma unroll for (uint32_t i = 4; i < 16; i++) { m[i] = d_data[i+8U]; } // round 1 GSPREC(0, 4, 0x8, 0xC, 0, 1); GSPREC(1, 5, 0x9, 0xD, 2, 3); GSPREC(2, 6, 0xA, 0xE, 4, 5); GSPREC(3, 7, 0xB, 0xF, 6, 7); GSPREC(0, 5, 0xA, 0xF, 8, 9); GSPREC(1, 6, 0xB, 0xC, 10, 11); GSPREC(2, 7, 0x8, 0xD, 12, 13); GSPREC(3, 4, 0x9, 0xE, 14, 15); // round 2 GSPREC(0, 4, 0x8, 0xC, 14, 10); GSPREC(1, 5, 0x9, 0xD, 4, 8); GSPREC(2, 6, 0xA, 0xE, 9, 15); GSPREC(3, 7, 0xB, 0xF, 13, 6); GSPREC(0, 5, 0xA, 0xF, 1, 12); GSPREC(1, 6, 0xB, 0xC, 0, 2); GSPREC(2, 7, 0x8, 0xD, 11, 7); GSPREC(3, 4, 0x9, 0xE, 5, 3); // round 3 GSPREC(0, 4, 0x8, 0xC, 11, 8); GSPREC(1, 5, 0x9, 0xD, 12, 0); GSPREC(2, 6, 0xA, 0xE, 5, 2); GSPREC(3, 7, 0xB, 0xF, 15, 13); GSPREC(0, 5, 0xA, 0xF, 10, 14); GSPREC(1, 6, 0xB, 0xC, 3, 6); GSPREC(2, 7, 0x8, 0xD, 7, 1); GSPREC(3, 4, 0x9, 0xE, 9, 4); // round 4 GSPREC(0, 4, 0x8, 0xC, 7, 9); GSPREC(1, 5, 0x9, 0xD, 3, 1); GSPREC(2, 6, 0xA, 0xE, 13, 12); GSPREC(3, 7, 0xB, 0xF, 11, 14); GSPREC(0, 5, 0xA, 0xF, 2, 6); GSPREC(1, 6, 0xB, 0xC, 5, 10); GSPREC(2, 7, 0x8, 0xD, 4, 0); GSPREC(3, 4, 0x9, 0xE, 15, 8); // round 5 GSPREC(0, 4, 0x8, 0xC, 9, 0); GSPREC(1, 5, 0x9, 0xD, 5, 7); GSPREC(2, 6, 0xA, 0xE, 2, 4); GSPREC(3, 7, 0xB, 0xF, 10, 15); GSPREC(0, 5, 0xA, 0xF, 14, 1); GSPREC(1, 6, 0xB, 0xC, 11, 12); GSPREC(2, 7, 0x8, 0xD, 6, 8); GSPREC(3, 4, 0x9, 0xE, 3, 13); // round 6 GSPREC(0, 4, 0x8, 0xC, 2, 12); GSPREC(1, 5, 0x9, 0xD, 6, 10); GSPREC(2, 6, 0xA, 0xE, 0, 11); GSPREC(3, 7, 0xB, 0xF, 8, 3); GSPREC(0, 5, 0xA, 0xF, 4, 13); GSPREC(1, 6, 0xB, 0xC, 7, 5); GSPREC(2, 7, 0x8, 0xD, 15,14); GSPREC(3, 4, 0x9, 0xE, 1, 9); // round 7 GSPREC(0, 4, 0x8, 0xC, 12, 5); GSPREC(1, 5, 0x9, 0xD, 1, 15); GSPREC(2, 6, 0xA, 0xE, 14,13); GSPREC(3, 7, 0xB, 0xF, 4, 10); GSPREC(0, 5, 0xA, 0xF, 0, 7); GSPREC(1, 6, 0xB, 0xC, 6, 3); GSPREC(2, 7, 0x8, 0xD, 9, 2); GSPREC(3, 4, 0x9, 0xE, 8, 11); // round 8 GSPREC(0, 4, 0x8, 0xC, 13,11); GSPREC(1, 5, 0x9, 0xD, 7, 14); GSPREC(2, 6, 0xA, 0xE, 12, 1); GSPREC(3, 7, 0xB, 0xF, 3, 9); GSPREC(0, 5, 0xA, 0xF, 5, 0); GSPREC(1, 6, 0xB, 0xC, 15, 4); GSPREC(2, 7, 0x8, 0xD, 8, 6); GSPREC(3, 4, 0x9, 0xE, 2, 10); // round 9 GSPREC(0, 4, 0x8, 0xC, 6, 15); GSPREC(1, 5, 0x9, 0xD, 14, 9); GSPREC(2, 6, 0xA, 0xE, 11, 3); GSPREC(3, 7, 0xB, 0xF, 0, 8); GSPREC(0, 5, 0xA, 0xF, 12, 2); GSPREC(1, 6, 0xB, 0xC, 13, 7); GSPREC(2, 7, 0x8, 0xD, 1, 4); GSPREC(3, 4, 0x9, 0xE, 10, 5); // round 10 GSPREC(0, 4, 0x8, 0xC, 10, 2); GSPREC(1, 5, 0x9, 0xD, 8, 4); GSPREC(2, 6, 0xA, 0xE, 7, 6); GSPREC(3, 7, 0xB, 0xF, 1, 5); GSPREC(0, 5, 0xA, 0xF, 15,11); GSPREC(1, 6, 0xB, 0xC, 9, 14); GSPREC(2, 7, 0x8, 0xD, 3, 12); GSPREC(3, 4, 0x9, 0xE, 13, 0); // round 11 GSPREC(0, 4, 0x8, 0xC, 0, 1); GSPREC(1, 5, 0x9, 0xD, 2, 3); GSPREC(2, 6, 0xA, 0xE, 4, 5); GSPREC(3, 7, 0xB, 0xF, 6, 7); GSPREC(0, 5, 0xA, 0xF, 8, 9); GSPREC(1, 6, 0xB, 0xC, 10,11); GSPREC(2, 7, 0x8, 0xD, 12,13); GSPREC(3, 4, 0x9, 0xE, 14,15); // round 12 GSPREC(0, 4, 0x8, 0xC, 14,10); GSPREC(1, 5, 0x9, 0xD, 4, 8); GSPREC(2, 6, 0xA, 0xE, 9, 15); GSPREC(3, 7, 0xB, 0xF, 13, 6); GSPREC(0, 5, 0xA, 0xF, 1, 12); GSPREC(1, 6, 0xB, 0xC, 0, 2); GSPREC(2, 7, 0x8, 0xD, 11, 7); GSPREC(3, 4, 0x9, 0xE, 5, 3); // round 13 GSPREC(0, 4, 0x8, 0xC, 11, 8); GSPREC(1, 5, 0x9, 0xD, 12, 0); GSPREC(2, 6, 0xA, 0xE, 5, 2); GSPREC(3, 7, 0xB, 0xF, 15,13); GSPREC(0, 5, 0xA, 0xF, 10,14); GSPREC(1, 6, 0xB, 0xC, 3, 6); GSPREC(2, 7, 0x8, 0xD, 7, 1); GSPREC(3, 4, 0x9, 0xE, 9, 4); // round 14 GSPREC(0, 4, 0x8, 0xC, 7, 9); GSPREC(1, 5, 0x9, 0xD, 3, 1); GSPREC(2, 6, 0xA, 0xE, 13,12); GSPREC(3, 7, 0xB, 0xF, 11,14); GSPREC(0, 5, 0xA, 0xF, 2, 6); GSPREC(1, 6, 0xB, 0xC, 5, 10); GSPREC(2, 7, 0x8, 0xD, 4, 0); //GSPREC(3, 4, 0x9, 0xE, 15, 8); v[3] += (m[15] ^ c_u256[8]) + v[4]; v[14] = __byte_perm(v[14] ^ v[3], 0, 0x1032); v[9] += v[14]; \ v[4] = SPH_ROTR32(v[4] ^ v[9], 12); v[3] += (m[8] ^ c_u256[15]) + v[4]; v[14] = __byte_perm(v[14] ^ v[3], 0, 0x0321); // only compute h6 & 7 h[6] ^= v[6] ^ v[14]; h[7] ^= v[7] ^ v[15]; } /* ############################################################################################################################### */ __global__ void blake256_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint32_t nonce = startNonce + thread; uint32_t h[8]; #pragma unroll for(int i=0; i < 8; i++) { h[i] = d_data[i]; } // ------ Close: Last 52/64 bytes ------ blake256_compress_14(h, nonce, (180U*8U)); if (h[7] == 0 && cuda_swab32(h[6]) <= highTarget) { #if NBN == 2 if (resNonce[0] != UINT32_MAX) resNonce[1] = nonce; else resNonce[0] = nonce; #else resNonce[0] = nonce; #endif } } } __host__ static uint32_t decred_cpu_hash_nonce(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget) { uint32_t result = UINT32_MAX; dim3 grid((threads + TPB-1)/TPB); dim3 block(TPB); /* Check error on Ctrl+C or kill to prevent segfaults on exit */ if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess) return result; blake256_gpu_hash_nonce <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget); cudaThreadSynchronize(); if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { result = h_resNonce[thr_id][0]; #if NBN > 1 for (int n=0; n < (NBN-1); n++) extra_results[n] = h_resNonce[thr_id][n+1]; #endif } return result; } __host__ static void decred_midstate_128(uint32_t *output, const uint32_t *input) { sph_blake256_context ctx; sph_blake256_set_rounds(14); sph_blake256_init(&ctx); sph_blake256(&ctx, input, 128); memcpy(output, (void*)ctx.H, 32); } __host__ void decred_cpu_setBlock_52(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget) { uint32_t _ALIGN(64) data[24]; memcpy(data, midstate, 32); // pre swab32 for (int i=0; i<13; i++) data[8+i] = swab32(penddata[i]); data[21] = 0x80000001; data[22] = 0; data[23] = 0x000005a0; CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 64, 0, cudaMemcpyHostToDevice)); } /* ############################################################################################################################### */ static bool init[MAX_GPUS] = { 0 }; // nonce position is different in decred #define DCR_NONCE_OFT32 35 extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) endiandata[48]; uint32_t _ALIGN(64) midstate[8]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t *pnonce = &pdata[DCR_NONCE_OFT32]; const uint32_t first_nonce = *pnonce; uint64_t targetHigh = ((uint64_t*)ptarget)[3]; int dev_id = device_map[thr_id]; int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 29 : 25; if (device_sm[dev_id] < 350) intensity = 22; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); int rc = 0; if (opt_benchmark) { targetHigh = 0x1ULL << 32; ptarget[6] = swab32(0xff); } if (!init[thr_id]) { cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage (linux) cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); CUDA_LOG_ERROR(); } CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); init[thr_id] = true; } memcpy(endiandata, pdata, 180); decred_midstate_128(midstate, endiandata); decred_cpu_setBlock_52(&pdata[32], midstate, ptarget); do { // GPU HASH uint32_t foundNonce = decred_cpu_hash_nonce(thr_id, throughput, (*pnonce), targetHigh); if (foundNonce != UINT32_MAX) { uint32_t vhashcpu[8]; uint32_t Htarg = ptarget[6]; be32enc(&endiandata[DCR_NONCE_OFT32], foundNonce); decred_hash(vhashcpu, endiandata); if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) { rc = 1; work_set_target_ratio(work, vhashcpu); *hashes_done = (*pnonce) - first_nonce + throughput; work->nonces[0] = swab32(foundNonce); #if NBN > 1 if (extra_results[0] != UINT32_MAX) { be32enc(&endiandata[DCR_NONCE_OFT32], extra_results[0]); decred_hash(vhashcpu, endiandata); if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) { work->nonces[1] = swab32(extra_results[0]); if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio) { work_set_target_ratio(work, vhashcpu); xchg(work->nonces[1], work->nonces[0]); } rc = 2; } extra_results[0] = UINT32_MAX; } #endif *pnonce = work->nonces[0]; return rc; } else if (opt_debug) { applog_hash(ptarget); applog_compare_hash(vhashcpu, ptarget); gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce); } } *pnonce += throughput; } while (!work_restart[thr_id].restart && max_nonce > (uint64_t)throughput + (*pnonce)); *hashes_done = (*pnonce) - first_nonce; return rc; } // cleanup extern "C" void free_decred(int thr_id) { if (!init[thr_id]) return; cudaDeviceSynchronize(); cudaFreeHost(h_resNonce[thr_id]); cudaFree(d_resNonce[thr_id]); init[thr_id] = false; cudaDeviceSynchronize(); }