/* Diese Funktion ist auf 84+32 Byte große Eingabedaten ausgerichtet (Heavycoin) */ #include #include "cuda_runtime.h" #include "device_launch_parameters.h" #include #include #define W_ALIGNMENT 65 // Folgende Definitionen später durch header ersetzen typedef unsigned int uint32_t; // globaler Speicher für alle HeftyHashes aller Threads extern uint32_t *d_heftyHashes[8]; extern uint32_t *d_nonceVector[8]; // globaler Speicher für unsere Ergebnisse uint32_t *d_hash2output[8]; /* Hash-Tabellen */ __constant__ uint32_t sha256_gpu_constantTable[64]; // muss expandiert werden __constant__ uint32_t sha256_gpu_blockHeader[16]; // 2x512 Bit Message __constant__ uint32_t sha256_gpu_register[8]; uint32_t sha256_cpu_hashTable[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; uint32_t sha256_cpu_constantTable[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; #define S(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) #define R(x, n) ((x) >> (n)) #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define S0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define S1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define s0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define s1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) #define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) ) // Die Hash-Funktion __global__ void sha256_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { // bestimme den aktuellen Zähler uint32_t nounce = startNounce + thread; nonceVector[thread] = nounce; // jeder thread in diesem Block bekommt sein eigenes W Array im Shared memory //extern __shared__ unsigned char s[]; //uint32_t *W = (uint32_t *)(&s[W_ALIGNMENT * sizeof(uint32_t) * threadIdx.x]); uint32_t W1[16]; uint32_t W2[16]; // Initialisiere die register a bis h mit der Hash-Tabelle uint32_t regs[8]; uint32_t hash[8]; // pre #pragma unroll 8 for (int k=0; k < 8; k++) { regs[k] = sha256_gpu_register[k]; hash[k] = regs[k]; } // 2. Runde //memcpy(W, &sha256_gpu_blockHeader[0], sizeof(uint32_t) * 16); // TODO: aufsplitten in zwei Teilblöcke //memcpy(&W[5], &heftyHashes[8 * (blockDim.x * blockIdx.x + threadIdx.x)], sizeof(uint32_t) * 8); // den richtigen Hefty1 Hash holen #pragma unroll 16 for(int k=0;k<16;k++) W1[k] = sha256_gpu_blockHeader[k]; uint32_t offset = 8 * (blockDim.x * blockIdx.x + threadIdx.x); #pragma unroll 8 for(int k=0;k<8;k++) W1[5+k] = heftyHashes[offset + k]; #pragma unroll 8 for (int i=5; i <5+8; ++i) W1[i] = SWAB32(W1[i]); // die Hefty1 Hashes brauchen eine Drehung ;) W1[3] = SWAB32(nounce); // Progress W1 #pragma unroll 16 for(int j=0;j<16;j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_gpu_constantTable[j] + W1[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; regs[0] = T1 + T2; regs[4] += T1; } // Progress W2...W3 #pragma unroll 3 for(int k=0;k<3;k++) { #pragma unroll 2 for(int j=0;j<2;j++) W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; #pragma unroll 5 for(int j=2;j<7;j++) W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; #pragma unroll 8 for(int j=7;j<15;j++) W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; // Rundenfunktion #pragma unroll 16 for(int j=0;j<16;j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_gpu_constantTable[j + 16 * (k+1)] + W2[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int l=6; l >= 0; l--) regs[l+1] = regs[l]; regs[0] = T1 + T2; regs[4] += T1; } #pragma unroll 16 for(int j=0;j<16;j++) W1[j] = W2[j]; } /* for(int j=16;j<64;j++) W[j] = s1(W[j-2]) + W[j-7] + s0(W[j-15]) + W[j-16]; #pragma unroll 64 for(int j=0;j<64;j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_gpu_constantTable[j] + W[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; regs[0] = T1 + T2; regs[4] += T1; } */ #pragma unroll 8 for(int k=0;k<8;k++) hash[k] += regs[k]; #pragma unroll 8 for(int k=0;k<8;k++) ((uint32_t*)outputHash)[8*thread+k] = SWAB32(hash[k]); } } // Setup-Funktionen __host__ void sha256_cpu_init(int thr_id, int threads) { // Kopiere die Hash-Tabellen in den GPU-Speicher cudaMemcpyToSymbol( sha256_gpu_constantTable, sha256_cpu_constantTable, sizeof(uint32_t) * 64 ); // Speicher für alle Ergebnisse belegen cudaMalloc(&d_hash2output[thr_id], 8 * sizeof(uint32_t) * threads); } __host__ void sha256_cpu_setBlock(void *data) // data muss 84-Byte haben! // heftyHash hat 32-Byte { // Nachricht expandieren und setzen uint32_t msgBlock[32]; memset(msgBlock, 0, sizeof(uint32_t) * 32); memcpy(&msgBlock[0], data, 84); memset(&msgBlock[21], 0, 32); // vorläufig Nullen anstatt der Hefty1 Hashes einfüllen msgBlock[29] |= 0x80; msgBlock[31] = 928; // bitlen for(int i=0;i<31;i++) // Byteorder drehen msgBlock[i] = SWAB32(msgBlock[i]); // die erste Runde wird auf der CPU durchgeführt, da diese für // alle Threads gleich ist. Der Hash wird dann an die Threads // übergeben uint32_t W[64]; // Erstelle expandierten Block W memcpy(W, &msgBlock[0], sizeof(uint32_t) * 16); for(int j=16;j<64;j++) W[j] = s1(W[j-2]) + W[j-7] + s0(W[j-15]) + W[j-16]; // Initialisiere die register a bis h mit der Hash-Tabelle uint32_t regs[8]; uint32_t hash[8]; // pre for (int k=0; k < 8; k++) { regs[k] = sha256_cpu_hashTable[k]; hash[k] = regs[k]; } // 1. Runde for(int j=0;j<64;j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_cpu_constantTable[j] + W[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); //#pragma unroll 7 for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; // sollte mal noch durch memmov ersetzt werden! // memcpy(®s[1], ®s[0], sizeof(uint32_t) * 7); regs[0] = T1 + T2; regs[4] += T1; } for(int k=0;k<8;k++) hash[k] += regs[k]; // hash speichern cudaMemcpyToSymbol( sha256_gpu_register, hash, sizeof(uint32_t) * 8 ); // Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch) cudaMemcpyToSymbol( sha256_gpu_blockHeader, &msgBlock[16], 64); } __host__ void sha256_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy) { // Hefty1 Hashes kopieren if (copy) cudaMemcpy( d_heftyHashes[thr_id], heftyHashes, 8 * sizeof(uint32_t) * threads, cudaMemcpyHostToDevice ); //else cudaThreadSynchronize(); } __host__ void sha256_cpu_hash(int thr_id, int threads, int startNounce) { const int threadsperblock = 128; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); // Größe des dynamischen Shared Memory Bereichs (abhängig von der Threadanzahl) //size_t shared_size = W_ALIGNMENT*sizeof(uint32_t)*threadsperblock; // ein uint32_t eingefügt gegen Bank Konflikte size_t shared_size = 0; // fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); sha256_gpu_hash<<>>(threads, startNounce, d_hash2output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]); }