#include <stdio.h> #include <memory.h> #include "cuda_helper.h" #include <sm_30_intrinsics.h> #ifdef __INTELLISENSE__ #define __shfl_up(a,b) #endif static uint32_t *d_tempBranch1Nonces[MAX_GPUS]; static uint32_t *d_numValid[MAX_GPUS]; static uint32_t *h_numValid[MAX_GPUS]; static uint32_t *d_partSum[2][MAX_GPUS]; // für bis zu vier partielle Summen // True/False tester typedef uint32_t(*cuda_compactTestFunction_t)(uint32_t *inpHash); __device__ uint32_t JackpotTrueTest(uint32_t *inpHash) { uint32_t tmp = inpHash[0] & 0x01; return (tmp == 1); } __device__ uint32_t JackpotFalseTest(uint32_t *inpHash) { uint32_t tmp = inpHash[0] & 0x01; return (tmp == 0); } __device__ cuda_compactTestFunction_t d_JackpotTrueFunction = JackpotTrueTest, d_JackpotFalseFunction = JackpotFalseTest; cuda_compactTestFunction_t h_JackpotTrueFunction[MAX_GPUS], h_JackpotFalseFunction[MAX_GPUS]; // Setup-Funktionen __host__ void jackpot_compactTest_cpu_init(int thr_id, uint32_t threads) { cudaMemcpyFromSymbol(&h_JackpotTrueFunction[thr_id], d_JackpotTrueFunction, sizeof(cuda_compactTestFunction_t)); cudaMemcpyFromSymbol(&h_JackpotFalseFunction[thr_id], d_JackpotFalseFunction, sizeof(cuda_compactTestFunction_t)); // wir brauchen auch Speicherplatz auf dem Device cudaMalloc(&d_tempBranch1Nonces[thr_id], sizeof(uint32_t) * threads * 2); cudaMalloc(&d_numValid[thr_id], 2*sizeof(uint32_t)); cudaMallocHost(&h_numValid[thr_id], 2*sizeof(uint32_t)); uint32_t s1; s1 = (threads / 256) * 2; cudaMalloc(&d_partSum[0][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block) cudaMalloc(&d_partSum[1][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block) } #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 300 /** * __shfl_up() calculates a source lane ID by subtracting delta from the caller's lane ID, and clamping to the range 0..width-1 */ #undef __shfl_up #define __shfl_up(var, delta, width) (0) #endif // Die Summenfunktion (vom NVIDIA SDK) __global__ void jackpot_compactTest_gpu_SCAN(uint32_t *data, int width, uint32_t *partial_sums=NULL, cuda_compactTestFunction_t testFunc=NULL, uint32_t threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL) { extern __shared__ uint32_t sums[]; int id = ((blockIdx.x * blockDim.x) + threadIdx.x); //int lane_id = id % warpSize; int lane_id = id % width; // determine a warp_id within a block //int warp_id = threadIdx.x / warpSize; int warp_id = threadIdx.x / width; sums[lane_id] = 0; // Below is the basic structure of using a shfl instruction // for a scan. // Record "value" as a variable - we accumulate it along the way uint32_t value; if(testFunc != NULL) { if (id < threads) { uint32_t *inpHash; if(d_validNonceTable == NULL) { // keine Nonce-Liste inpHash = &inpHashes[id<<4]; }else { // Nonce-Liste verfügbar int nonce = d_validNonceTable[id] - startNounce; inpHash = &inpHashes[nonce<<4]; } value = (*testFunc)(inpHash); }else { value = 0; } }else { value = data[id]; } __syncthreads(); // Now accumulate in log steps up the chain // compute sums, with another thread's value who is // distance delta away (i). Note // those threads where the thread 'i' away would have // been out of bounds of the warp are unaffected. This // creates the scan sum. #pragma unroll for (int i=1; i<=width; i*=2) { uint32_t n = __shfl_up((int)value, i, width); if (lane_id >= i) value += n; } // value now holds the scan value for the individual thread // next sum the largest values for each warp // write the sum of the warp to smem //if (threadIdx.x % warpSize == warpSize-1) if (threadIdx.x % width == width-1) { sums[warp_id] = value; } __syncthreads(); // // scan sum the warp sums // the same shfl scan operation, but performed on warp sums // if (warp_id == 0) { uint32_t warp_sum = sums[lane_id]; for (int i=1; i<=width; i*=2) { uint32_t n = __shfl_up((int)warp_sum, i, width); if (lane_id >= i) warp_sum += n; } sums[lane_id] = warp_sum; } __syncthreads(); // perform a uniform add across warps in the block // read neighbouring warp's sum and add it to threads value uint32_t blockSum = 0; if (warp_id > 0) { blockSum = sums[warp_id-1]; } value += blockSum; // Now write out our result data[id] = value; // last thread has sum, write write out the block's sum if (partial_sums != NULL && threadIdx.x == blockDim.x-1) { partial_sums[blockIdx.x] = value; } } // Uniform add: add partial sums array __global__ void jackpot_compactTest_gpu_ADD(uint32_t *data, uint32_t *partial_sums, int len) { __shared__ uint32_t buf; int id = ((blockIdx.x * blockDim.x) + threadIdx.x); if (id > len) return; if (threadIdx.x == 0) { buf = partial_sums[blockIdx.x]; } __syncthreads(); data[id] += buf; } // Der Scatter __global__ void jackpot_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTestFunction_t testFunc, uint32_t threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL) { int id = ((blockIdx.x * blockDim.x) + threadIdx.x); uint32_t actNounce = id; uint32_t value; if (id < threads) { // uint32_t nounce = startNounce + id; uint32_t *inpHash; if(d_validNonceTable == NULL) { // keine Nonce-Liste inpHash = &inpHashes[id<<4]; }else { // Nonce-Liste verfügbar int nonce = d_validNonceTable[id] - startNounce; actNounce = nonce; inpHash = &inpHashes[nonce<<4]; } value = (*testFunc)(inpHash); }else { value = 0; } if( value ) { int idx = sum[id]; if(idx > 0) outp[idx-1] = startNounce + actNounce; } } __host__ static uint32_t jackpot_compactTest_roundUpExp(uint32_t val) { if(val == 0) return 0; uint32_t mask = 0x80000000; while( (val & mask) == 0 ) mask = mask >> 1; if( (val & (~mask)) != 0 ) return mask << 1; return mask; } __host__ void jackpot_compactTest_cpu_singleCompaction(int thr_id, uint32_t threads, uint32_t *nrm, uint32_t *d_nonces1, cuda_compactTestFunction_t function, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable) { int orgThreads = threads; threads = (int)jackpot_compactTest_roundUpExp((uint32_t)threads); // threadsPerBlock ausrechnen int blockSize = 256; int nSummen = threads / blockSize; int thr1 = (threads+blockSize-1) / blockSize; int thr2 = threads / (blockSize*blockSize); int blockSize2 = (nSummen < blockSize) ? nSummen : blockSize; int thr3 = (nSummen + blockSize2-1) / blockSize2; bool callThrid = (thr2 > 0) ? true : false; // Erster Initialscan jackpot_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>( d_tempBranch1Nonces[thr_id], 32, d_partSum[0][thr_id], function, orgThreads, startNounce, inpHashes, d_validNonceTable); // weitere Scans if(callThrid) { jackpot_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], 32, d_partSum[1][thr_id]); jackpot_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum[1][thr_id], (thr2>32) ? 32 : thr2); }else { jackpot_compactTest_gpu_SCAN<<<thr3,blockSize2, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], (blockSize2>32) ? 32 : blockSize2); } // Sync + Anzahl merken cudaStreamSynchronize(NULL); if(callThrid) cudaMemcpy(nrm, &(d_partSum[1][thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); else cudaMemcpy(nrm, &(d_partSum[0][thr_id])[nSummen-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); // Addieren if(callThrid) { jackpot_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum[0][thr_id]+blockSize, d_partSum[1][thr_id], blockSize*thr2); } jackpot_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum[0][thr_id], threads); // Scatter jackpot_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1, function, orgThreads, startNounce, inpHashes, d_validNonceTable); // Sync cudaStreamSynchronize(NULL); } ////// ACHTUNG: Diese funktion geht aktuell nur mit threads > 65536 (Am besten 256 * 1024 oder 256*2048) __host__ void jackpot_compactTest_cpu_dualCompaction(int thr_id, uint32_t threads, uint32_t *nrm, uint32_t *d_nonces1, uint32_t *d_nonces2, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable) { jackpot_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[0], d_nonces1, h_JackpotTrueFunction[thr_id], startNounce, inpHashes, d_validNonceTable); jackpot_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[1], d_nonces2, h_JackpotFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable); /* // threadsPerBlock ausrechnen int blockSize = 256; int thr1 = threads / blockSize; int thr2 = threads / (blockSize*blockSize); // 1 jackpot_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch1Nonces[thr_id], 32, d_partSum1[thr_id], h_JackpotTrueFunction[thr_id], threads, startNounce, inpHashes); jackpot_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]); jackpot_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2); cudaStreamSynchronize(NULL); cudaMemcpy(&nrm[0], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); jackpot_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2); jackpot_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads); // 2 jackpot_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch2Nonces[thr_id], 32, d_partSum1[thr_id], h_JackpotFalseFunction[thr_id], threads, startNounce, inpHashes); jackpot_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]); jackpot_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2); cudaStreamSynchronize(NULL); cudaMemcpy(&nrm[1], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); jackpot_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2); jackpot_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch2Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads); // Hier ist noch eine Besonderheit: in d_tempBranch1Nonces sind die element von 1...nrm1 die Interessanten // Schritt 3: Scatter jackpot_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1, h_JackpotTrueFunction[thr_id], threads, startNounce, inpHashes); jackpot_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch2Nonces[thr_id], d_nonces2, h_JackpotFalseFunction[thr_id], threads, startNounce, inpHashes); cudaStreamSynchronize(NULL); */ } __host__ void jackpot_compactTest_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable, uint32_t *d_nonces1, uint32_t *nrm1, uint32_t *d_nonces2, uint32_t *nrm2, int order) { // Wenn validNonceTable genutzt wird, dann werden auch nur die Nonces betrachtet, die dort enthalten sind // "threads" ist in diesem Fall auf die Länge dieses Array's zu setzen! jackpot_compactTest_cpu_dualCompaction(thr_id, threads, h_numValid[thr_id], d_nonces1, d_nonces2, startNounce, inpHashes, d_validNonceTable); cudaStreamSynchronize(NULL); // Das original braucht zwar etwas CPU-Last, ist an dieser Stelle aber evtl besser *nrm1 = h_numValid[thr_id][0]; *nrm2 = h_numValid[thr_id][1]; }