extern "C" { #include "sph/sph_skein.h" #include "sph/sph_shavite.h" #include "sph/sph_shabal.h" #include "sph/sph_streebog.h" } #include "miner.h" #include "cuda_helper.h" #include "cuda_x11.h" extern void skein512_cpu_setBlock_80(void *pdata); extern void skein512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int swap); extern void x14_shabal512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); // for SM3.x extern void streebog_sm3_set_target(uint32_t* ptarget); extern void streebog_sm3_hash_64_final(int thr_id, uint32_t threads, uint32_t *d_hash, uint32_t* d_resNonce); // for latest cards only extern void skunk_cpu_init(int thr_id, uint32_t threads); extern void skunk_streebog_set_target(uint32_t* ptarget); extern void skunk_cuda_streebog(int thr_id, uint32_t threads, uint32_t *d_hash, uint32_t* d_resNonce); #include #include #define NBN 2 static uint32_t *d_hash[MAX_GPUS]; static uint32_t *d_resNonce[MAX_GPUS]; // veltor CPU Hash extern "C" void veltorhash(void *output, const void *input) { unsigned char _ALIGN(128) hash[128] = { 0 }; sph_skein512_context ctx_skein; sph_gost512_context ctx_gost; sph_shabal512_context ctx_shabal; sph_shavite512_context ctx_shavite; sph_skein512_init(&ctx_skein); sph_skein512(&ctx_skein, input, 80); sph_skein512_close(&ctx_skein, (void*) hash); sph_shavite512_init(&ctx_shavite); sph_shavite512(&ctx_shavite, (const void*) hash, 64); sph_shavite512_close(&ctx_shavite, (void*) hash); sph_shabal512_init(&ctx_shabal); sph_shabal512(&ctx_shabal, (const void*) hash, 64); sph_shabal512_close(&ctx_shabal, (void*) hash); sph_gost512_init(&ctx_gost); sph_gost512(&ctx_gost, (const void*) hash, 64); sph_gost512_close(&ctx_gost, (void*) hash); memcpy(output, hash, 32); } static bool init[MAX_GPUS] = { 0 }; static bool use_compat_kernels[MAX_GPUS] = { 0 }; extern "C" int scanhash_veltor(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { int dev_id = device_map[thr_id]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int intensity = (device_sm[device_map[thr_id]] > 500) ? 20 : 18; if (strstr(device_name[dev_id], "GTX 10")) intensity = 21; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); //if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ptarget[7] = 0xf; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); skunk_cpu_init(thr_id, throughput); use_compat_kernels[thr_id] = (cuda_arch[dev_id] < 500); x11_shavite512_cpu_init(thr_id, throughput); CUDA_CALL_OR_RET_X(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput), 0); CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); init[thr_id] = true; } uint32_t _ALIGN(64) h_resNonce[NBN]; uint32_t _ALIGN(64) endiandata[20]; for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); skein512_cpu_setBlock_80(endiandata); cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)); if(use_compat_kernels[thr_id]) streebog_sm3_set_target(ptarget); else skunk_streebog_set_target(ptarget); do { int order = 0; skein512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], 1); order++; x11_shavite512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); x14_shabal512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); if(use_compat_kernels[thr_id]) streebog_sm3_hash_64_final(thr_id, throughput, d_hash[thr_id], d_resNonce[thr_id]); else skunk_cuda_streebog(thr_id, throughput, d_hash[thr_id], d_resNonce[thr_id]); cudaMemcpy(h_resNonce, d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost); *hashes_done = pdata[19] - first_nonce + throughput; if (h_resNonce[0] != UINT32_MAX) { uint32_t _ALIGN(64) vhash[8]; const uint32_t Htarg = ptarget[7]; const uint32_t startNounce = pdata[19]; be32enc(&endiandata[19], startNounce + h_resNonce[0]); veltorhash(vhash, endiandata); if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) { work->nonces[0] = startNounce + h_resNonce[0]; work->valid_nonces = 1; work_set_target_ratio(work, vhash); if (h_resNonce[1] != UINT32_MAX) { uint32_t secNonce = work->nonces[1] = startNounce + h_resNonce[1]; be32enc(&endiandata[19], secNonce); veltorhash(vhash, endiandata); work->nonces[1] = secNonce; if (bn_hash_target_ratio(vhash, ptarget) > work->shareratio[0]) { work_set_target_ratio(work, vhash); xchg(work->nonces[1], work->nonces[0]); } else { bn_set_target_ratio(work, vhash, work->valid_nonces); } work->valid_nonces++; pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; } else { pdata[19] = work->nonces[0] + 1; // cursor } return work->valid_nonces; } else if (vhash[7] > Htarg) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", h_resNonce[0]); cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)); pdata[19] = startNounce + h_resNonce[0] + 1; continue; } } if ((uint64_t) throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; return 0; } // cleanup extern "C" void free_veltor(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); cudaFree(d_resNonce[thr_id]); init[thr_id] = false; cudaDeviceSynchronize(); }