// // Contains the autotuning logic and some utility functions. // Note that all CUDA kernels have been moved to other .cu files // #include #include #include #include // usleep #include // tolower #include "cuda_helper.h" #include "salsa_kernel.h" #include "nv_kernel2.h" #include "titan_kernel.h" #include "nv_kernel.h" #include "kepler_kernel.h" #include "fermi_kernel.h" #include "test_kernel.h" #include "miner.h" #if defined(_WIN64) || defined(__x86_64__) || defined(__64BIT__) #define MAXMEM 0x300000000ULL // 12 GB (the largest Kepler) #else #define MAXMEM 0xFFFFFFFFULL // nearly 4 GB (32 bit limitations) #endif // require CUDA 5.5 driver API #define DMAJ 5 #define DMIN 5 // define some error checking macros #define DELIMITER '/' #define __FILENAME__ ( strrchr(__FILE__, DELIMITER) != NULL ? strrchr(__FILE__, DELIMITER)+1 : __FILE__ ) #undef checkCudaErrors #define checkCudaErrors(x) \ { \ cudaGetLastError(); \ x; \ cudaError_t err = cudaGetLastError(); \ if (err != cudaSuccess && !abort_flag) \ applog(LOG_ERR, "GPU #%d: Err %d: %s (%s:%d)", device_map[thr_id], err, cudaGetErrorString(err), __FILENAME__, __LINE__); \ } // some globals containing pointers to device memory (for chunked allocation) // [MAX_GPUS] indexes up to MAX_GPUS threads (0...MAX_GPUS-1) int MAXWARPS[MAX_GPUS]; uint32_t* h_V[MAX_GPUS][TOTAL_WARP_LIMIT*64]; // NOTE: the *64 prevents buffer overflow for --keccak uint32_t h_V_extra[MAX_GPUS][TOTAL_WARP_LIMIT*64]; // with really large kernel launch configurations KernelInterface *Best_Kernel_Heuristics(cudaDeviceProp *props) { KernelInterface *kernel = NULL; uint64_t N = 1UL << (opt_nfactor+1); if (IS_SCRYPT() || (IS_SCRYPT_JANE() && N <= 8192)) { // high register count kernels (scrypt, low N-factor scrypt-jane) if (props->major > 3 || (props->major == 3 && props->minor >= 5)) kernel = new NV2Kernel(); // we don't want this for Keccak though else if (props->major == 3 && props->minor == 0) kernel = new NVKernel(); else kernel = new FermiKernel(); } else { // high N-factor scrypt-jane = low registers count kernels if (props->major > 3 || (props->major == 3 && props->minor >= 5)) kernel = new TitanKernel(); else if (props->major == 3 && props->minor == 0) kernel = new KeplerKernel(); else kernel = new TestKernel(); } return kernel; } bool validate_config(char *config, int &b, int &w, KernelInterface **kernel = NULL, cudaDeviceProp *props = NULL) { bool success = false; char kernelid = ' '; if (config != NULL) { if (config[0] == 'T' || config[0] == 'K' || config[0] == 'F' || config[0] == 'L' || config[0] == 't' || config[0] == 'k' || config[0] == 'f' || config[0] == 'Z' || config[0] == 'Y' || config[0] == 'X') { kernelid = config[0]; config++; } if (config[0] >= '0' && config[0] <= '9') if (sscanf(config, "%dx%d", &b, &w) == 2) success = true; if (success && kernel != NULL) { switch (kernelid) { case 'T': case 'Z': *kernel = new NV2Kernel(); break; case 't': *kernel = new TitanKernel(); break; case 'K': case 'Y': *kernel = new NVKernel(); break; case 'k': *kernel = new KeplerKernel(); break; case 'F': case 'L': *kernel = new FermiKernel(); break; case 'f': case 'X': *kernel = new TestKernel(); break; case ' ': // choose based on device architecture *kernel = Best_Kernel_Heuristics(props); break; } } } return success; } std::map context_blocks; std::map context_wpb; std::map context_concurrent; std::map context_kernel; std::map context_idata[2]; std::map context_odata[2]; std::map context_streams[2]; std::map context_X[2]; std::map context_H[2]; std::map context_serialize[2]; // for SHA256 hashing on GPU std::map context_tstate[2]; std::map context_ostate[2]; std::map context_hash[2]; int find_optimal_blockcount(int thr_id, KernelInterface* &kernel, bool &concurrent, int &wpb); int cuda_throughput(int thr_id) { int GRID_BLOCKS, WARPS_PER_BLOCK; if (context_blocks.find(thr_id) == context_blocks.end()) { #if 0 CUcontext ctx; cuCtxCreate( &ctx, CU_CTX_SCHED_YIELD, device_map[thr_id] ); cuCtxSetCurrent(ctx); #else checkCudaErrors(cudaSetDevice(device_map[thr_id])); checkCudaErrors(cudaSetDeviceFlags(cudaDeviceScheduleYield)); #endif KernelInterface *kernel; bool concurrent; GRID_BLOCKS = find_optimal_blockcount(thr_id, kernel, concurrent, WARPS_PER_BLOCK); if(GRID_BLOCKS == 0) return 0; unsigned int THREADS_PER_WU = kernel->threads_per_wu(); unsigned int mem_size = WU_PER_LAUNCH * sizeof(uint32_t) * 32; unsigned int state_size = WU_PER_LAUNCH * sizeof(uint32_t) * 8; // allocate device memory for scrypt_core inputs and outputs uint32_t *tmp; checkCudaErrors(cudaMalloc((void **) &tmp, mem_size)); context_idata[0][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, mem_size)); context_idata[1][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, mem_size)); context_odata[0][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, mem_size)); context_odata[1][thr_id] = tmp; // allocate pinned host memory for scrypt hashes checkCudaErrors(cudaHostAlloc((void **) &tmp, state_size, cudaHostAllocDefault)); context_H[0][thr_id] = tmp; checkCudaErrors(cudaHostAlloc((void **) &tmp, state_size, cudaHostAllocDefault)); context_H[1][thr_id] = tmp; if (IS_SCRYPT()) { if (parallel < 2) { // allocate pinned host memory for scrypt_core input/output checkCudaErrors(cudaHostAlloc((void **) &tmp, mem_size, cudaHostAllocDefault)); context_X[0][thr_id] = tmp; checkCudaErrors(cudaHostAlloc((void **) &tmp, mem_size, cudaHostAllocDefault)); context_X[1][thr_id] = tmp; } else { // allocate tstate, ostate, scrypt hash device memory checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_tstate[0][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_tstate[1][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_ostate[0][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_ostate[1][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_hash[0][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_hash[1][thr_id] = tmp; } } else /* if (IS_SCRYPT_JANE()) */ { // allocate pinned host memory for scrypt_core input/output checkCudaErrors(cudaHostAlloc((void **) &tmp, mem_size, cudaHostAllocDefault)); context_X[0][thr_id] = tmp; checkCudaErrors(cudaHostAlloc((void **) &tmp, mem_size, cudaHostAllocDefault)); context_X[1][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_hash[0][thr_id] = tmp; checkCudaErrors(cudaMalloc((void **) &tmp, state_size)); context_hash[1][thr_id] = tmp; } // create two CUDA streams cudaStream_t tmp2; checkCudaErrors( cudaStreamCreate(&tmp2) ); context_streams[0][thr_id] = tmp2; checkCudaErrors( cudaStreamCreate(&tmp2) ); context_streams[1][thr_id] = tmp2; // events used to serialize the kernel launches (we don't want any overlapping of kernels) cudaEvent_t tmp4; checkCudaErrors(cudaEventCreateWithFlags(&tmp4, cudaEventDisableTiming)); context_serialize[0][thr_id] = tmp4; checkCudaErrors(cudaEventCreateWithFlags(&tmp4, cudaEventDisableTiming)); context_serialize[1][thr_id] = tmp4; checkCudaErrors(cudaEventRecord(context_serialize[1][thr_id])); context_kernel[thr_id] = kernel; context_concurrent[thr_id] = concurrent; context_blocks[thr_id] = GRID_BLOCKS; context_wpb[thr_id] = WARPS_PER_BLOCK; } GRID_BLOCKS = context_blocks[thr_id]; WARPS_PER_BLOCK = context_wpb[thr_id]; unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu(); return WU_PER_LAUNCH; } // Beginning of GPU Architecture definitions inline int _ConvertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine the # of cores per SM typedef struct { int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version int Cores; } sSMtoCores; sSMtoCores nGpuArchCoresPerSM[] = { { 0x10, 8 }, // Tesla Generation (SM 1.0) G80 class { 0x11, 8 }, // Tesla Generation (SM 1.1) G8x class { 0x12, 8 }, // Tesla Generation (SM 1.2) G9x class { 0x13, 8 }, // Tesla Generation (SM 1.3) GT200 class { 0x20, 32 }, // Fermi Generation (SM 2.0) GF100 class { 0x21, 48 }, // Fermi Generation (SM 2.1) GF10x class { 0x30, 192 }, // Kepler Generation (SM 3.0) GK10x class - GK104 = 1536 cores / 8 SMs { 0x35, 192 }, // Kepler Generation (SM 3.5) GK11x class { 0x50, 128 }, // Maxwell First Generation (SM 5.0) GTX750/750Ti { 0x52, 128 }, // Maxwell Second Generation (SM 5.2) GTX980 = 2048 cores / 16 SMs - GTX970 1664 cores / 13 SMs { 0x61, 128 }, // Pascal GeForce (SM 6.1) { -1, -1 }, }; int index = 0; while (nGpuArchCoresPerSM[index].SM != -1) { if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) { return nGpuArchCoresPerSM[index].Cores; } index++; } // If we don't find the values, we default use the previous one to run properly applog(LOG_WARNING, "MapSMtoCores for SM %d.%d is undefined. Default to use %d Cores/SM", major, minor, 128); return 128; } #ifdef WIN32 #include static int console_width() { CONSOLE_SCREEN_BUFFER_INFO csbi; GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &csbi); return csbi.srWindow.Right - csbi.srWindow.Left + 1; } #else static inline int console_width() { return 999; } #endif int find_optimal_blockcount(int thr_id, KernelInterface* &kernel, bool &concurrent, int &WARPS_PER_BLOCK) { int cw = console_width(); int optimal_blocks = 0; cudaDeviceProp props; checkCudaErrors(cudaGetDeviceProperties(&props, device_map[thr_id])); concurrent = (props.concurrentKernels > 0); WARPS_PER_BLOCK = -1; // if not specified, use interactive mode for devices that have the watchdog timer enabled if (device_interactive[thr_id] == -1) device_interactive[thr_id] = props.kernelExecTimeoutEnabled; // turn off texture cache if not otherwise specified if (device_texturecache[thr_id] == -1) device_texturecache[thr_id] = 0; // if not otherwise specified or required, turn single memory allocations off as they reduce // the amount of memory that we can allocate on Windows Vista, 7 and 8 (WDDM driver model issue) if (device_singlememory[thr_id] == -1) device_singlememory[thr_id] = 0; // figure out which kernel implementation to use if (!validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK, &kernel, &props)) { kernel = NULL; if (device_config[thr_id] != NULL) { if (device_config[thr_id][0] == 'T' || device_config[thr_id][0] == 'Z') kernel = new NV2Kernel(); else if (device_config[thr_id][0] == 't') kernel = new TitanKernel(); else if (device_config[thr_id][0] == 'K' || device_config[thr_id][0] == 'Y') kernel = new NVKernel(); else if (device_config[thr_id][0] == 'k') kernel = new KeplerKernel(); else if (device_config[thr_id][0] == 'F' || device_config[thr_id][0] == 'L') kernel = new FermiKernel(); else if (device_config[thr_id][0] == 'f' || device_config[thr_id][0] == 'X') kernel = new TestKernel(); } if (kernel == NULL) kernel = Best_Kernel_Heuristics(&props); } if (kernel->get_major_version() > props.major || kernel->get_major_version() == props.major && kernel->get_minor_version() > props.minor) { applog(LOG_ERR, "GPU #%d: FATAL: the '%c' kernel requires %d.%d capability!", device_map[thr_id], kernel->get_identifier(), kernel->get_major_version(), kernel->get_minor_version()); return 0; } // set whatever cache configuration and shared memory bank mode the kernel prefers checkCudaErrors(cudaDeviceSetCacheConfig(kernel->cache_config())); checkCudaErrors(cudaDeviceSetSharedMemConfig(kernel->shared_mem_config())); // some kernels (e.g. Titan) do not support the texture cache if (kernel->no_textures() && device_texturecache[thr_id]) { applog(LOG_WARNING, "GPU #%d: the '%c' kernel ignores the texture cache argument", device_map[thr_id], kernel->get_identifier()); device_texturecache[thr_id] = 0; } // Texture caching only works with single memory allocation if (device_texturecache[thr_id]) device_singlememory[thr_id] = 1; if (kernel->single_memory() && !device_singlememory[thr_id]) { applog(LOG_WARNING, "GPU #%d: the '%c' kernel requires single memory allocation", device_map[thr_id], kernel->get_identifier()); device_singlememory[thr_id] = 1; } if (device_lookup_gap[thr_id] == 0) device_lookup_gap[thr_id] = 1; if (!kernel->support_lookup_gap() && device_lookup_gap[thr_id] > 1) { applog(LOG_WARNING, "GPU #%d: the '%c' kernel does not support a lookup gap", device_map[thr_id], kernel->get_identifier()); device_lookup_gap[thr_id] = 1; } if (opt_debug) { applog(LOG_INFO, "GPU #%d: interactive: %d, tex-cache: %d%s, single-alloc: %d", device_map[thr_id], (device_interactive[thr_id] != 0) ? 1 : 0, (device_texturecache[thr_id] != 0) ? device_texturecache[thr_id] : 0, (device_texturecache[thr_id] != 0) ? "D" : "", (device_singlememory[thr_id] != 0) ? 1 : 0 ); } // number of threads collaborating on one work unit (hash) unsigned int THREADS_PER_WU = kernel->threads_per_wu(); unsigned int LOOKUP_GAP = device_lookup_gap[thr_id]; unsigned int BACKOFF = device_backoff[thr_id]; unsigned int N = (1 << (opt_nfactor+1)); double szPerWarp = (double)(SCRATCH * WU_PER_WARP * sizeof(uint32_t)); //applog(LOG_INFO, "WU_PER_WARP=%u, THREADS_PER_WU=%u, LOOKUP_GAP=%u, BACKOFF=%u, SCRATCH=%u", WU_PER_WARP, THREADS_PER_WU, LOOKUP_GAP, BACKOFF, SCRATCH); applog(LOG_INFO, "GPU #%d: %d hashes / %.1f MB per warp.", device_map[thr_id], WU_PER_WARP, szPerWarp / (1024.0 * 1024.0)); // compute highest MAXWARPS numbers for kernels allowing cudaBindTexture to succeed int MW_1D_4 = 134217728 / (SCRATCH * WU_PER_WARP / 4); // for uint4_t textures int MW_1D_2 = 134217728 / (SCRATCH * WU_PER_WARP / 2); // for uint2_t textures int MW_1D = kernel->get_texel_width() == 2 ? MW_1D_2 : MW_1D_4; uint32_t *d_V = NULL; if (device_singlememory[thr_id]) { // if no launch config was specified, we simply // allocate the single largest memory chunk on the device that we can get if (validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK)) { MAXWARPS[thr_id] = optimal_blocks * WARPS_PER_BLOCK; } else { // compute no. of warps to allocate the largest number producing a single memory block // PROBLEM: one some devices, ALL allocations will fail if the first one failed. This sucks. size_t MEM_LIMIT = (size_t)min((unsigned long long)MAXMEM, (unsigned long long)props.totalGlobalMem); int warpmax = (int)min((unsigned long long)TOTAL_WARP_LIMIT, (unsigned long long)(MEM_LIMIT / szPerWarp)); // run a bisection algorithm for memory allocation (way more reliable than the previous approach) int best = 0; int warp = (warpmax+1)/2; int interval = (warpmax+1)/2; while (interval > 0) { cudaGetLastError(); // clear the error state cudaMalloc((void **)&d_V, (size_t)(szPerWarp * warp)); if (cudaGetLastError() == cudaSuccess) { checkCudaErrors(cudaFree(d_V)); d_V = NULL; if (warp > best) best = warp; if (warp == warpmax) break; interval = (interval+1)/2; warp += interval; if (warp > warpmax) warp = warpmax; } else { interval = interval/2; warp -= interval; if (warp < 1) warp = 1; } } // back off a bit from the largest possible allocation size MAXWARPS[thr_id] = ((100-BACKOFF)*best+50)/100; } // now allocate a buffer for determined MAXWARPS setting cudaGetLastError(); // clear the error state cudaMalloc((void **)&d_V, (size_t)SCRATCH * WU_PER_WARP * MAXWARPS[thr_id] * sizeof(uint32_t)); if (cudaGetLastError() == cudaSuccess) { for (int i=0; i < MAXWARPS[thr_id]; ++i) h_V[thr_id][i] = d_V + SCRATCH * WU_PER_WARP * i; if (device_texturecache[thr_id] == 1) { if (validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK)) { if ( optimal_blocks * WARPS_PER_BLOCK > MW_1D ) { applog(LOG_ERR, "GPU #%d: '%s' exceeds limits for 1D cache. Using 2D cache instead.", device_map[thr_id], device_config[thr_id]); device_texturecache[thr_id] = 2; } } // bind linear memory to a 1D texture reference if (kernel->get_texel_width() == 2) kernel->bindtexture_1D(d_V, SCRATCH * WU_PER_WARP * min(MAXWARPS[thr_id],MW_1D_2) * sizeof(uint32_t)); else kernel->bindtexture_1D(d_V, SCRATCH * WU_PER_WARP * min(MAXWARPS[thr_id],MW_1D_4) * sizeof(uint32_t)); } else if (device_texturecache[thr_id] == 2) { // bind pitch linear memory to a 2D texture reference if (kernel->get_texel_width() == 2) kernel->bindtexture_2D(d_V, SCRATCH/2, WU_PER_WARP * MAXWARPS[thr_id], SCRATCH*sizeof(uint32_t)); else kernel->bindtexture_2D(d_V, SCRATCH/4, WU_PER_WARP * MAXWARPS[thr_id], SCRATCH*sizeof(uint32_t)); } } else { applog(LOG_ERR, "GPU #%d: FATAL: Launch config '%s' requires too much memory!", device_map[thr_id], device_config[thr_id]); return 0; } } else { if (validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK)) MAXWARPS[thr_id] = optimal_blocks * WARPS_PER_BLOCK; else MAXWARPS[thr_id] = TOTAL_WARP_LIMIT; // chunked memory allocation up to device limits int warp; for (warp = 0; warp < MAXWARPS[thr_id]; ++warp) { // work around partition camping problems by adding a random start address offset to each allocation h_V_extra[thr_id][warp] = (props.major == 1) ? (16 * (rand()%(16384/16))) : 0; cudaGetLastError(); // clear the error state cudaMalloc((void **) &h_V[thr_id][warp], (SCRATCH * WU_PER_WARP + h_V_extra[thr_id][warp])*sizeof(uint32_t)); if (cudaGetLastError() == cudaSuccess) h_V[thr_id][warp] += h_V_extra[thr_id][warp]; else { h_V_extra[thr_id][warp] = 0; // back off by several warp allocations to have some breathing room int remove = (BACKOFF*warp+50)/100; for (int i=0; warp > 0 && i < remove; ++i) { warp--; checkCudaErrors(cudaFree(h_V[thr_id][warp]-h_V_extra[thr_id][warp])); h_V[thr_id][warp] = NULL; h_V_extra[thr_id][warp] = 0; } break; } } MAXWARPS[thr_id] = warp; } kernel->set_scratchbuf_constants(MAXWARPS[thr_id], h_V[thr_id]); if (validate_config(device_config[thr_id], optimal_blocks, WARPS_PER_BLOCK)) { if (optimal_blocks * WARPS_PER_BLOCK > MAXWARPS[thr_id]) { applog(LOG_ERR, "GPU #%d: FATAL: Given launch config '%s' requires too much memory.", device_map[thr_id], device_config[thr_id]); return 0; } if (WARPS_PER_BLOCK > kernel->max_warps_per_block()) { applog(LOG_ERR, "GPU #%d: FATAL: Given launch config '%s' exceeds warp limit for '%c' kernel.", device_map[thr_id], device_config[thr_id], kernel->get_identifier()); return 0; } } else { if (device_config[thr_id] != NULL && strcasecmp("auto", device_config[thr_id])) applog(LOG_WARNING, "GPU #%d: Given launch config '%s' does not validate.", device_map[thr_id], device_config[thr_id]); if (opt_autotune) { applog(LOG_INFO, "GPU #%d: Performing auto-tuning, please wait 2 minutes...", device_map[thr_id]); // allocate device memory uint32_t *d_idata = NULL, *d_odata = NULL; unsigned int mem_size = MAXWARPS[thr_id] * WU_PER_WARP * sizeof(uint32_t) * 32; checkCudaErrors(cudaMalloc((void **) &d_idata, mem_size)); checkCudaErrors(cudaMalloc((void **) &d_odata, mem_size)); // pre-initialize some device memory uint32_t *h_idata = (uint32_t*)malloc(mem_size); for (unsigned int i=0; i < mem_size/sizeof(uint32_t); ++i) h_idata[i] = i*2654435761UL; // knuth's method checkCudaErrors(cudaMemcpy(d_idata, h_idata, mem_size, cudaMemcpyHostToDevice)); free(h_idata); double best_hash_sec = 0.0; int best_wpb = 0; // auto-tuning loop { // we want to have enough total warps for half the multiprocessors at least // compute highest MAXWARPS number that we can support based on texture cache mode int MINTW = props.multiProcessorCount / 2; int MAXTW = (device_texturecache[thr_id] == 1) ? min(MAXWARPS[thr_id],MW_1D) : MAXWARPS[thr_id]; // we want to have blocks for half the multiprocessors at least int MINB = props.multiProcessorCount / 2; int MAXB = MAXTW; double tmin = 0.05; applog(LOG_INFO, "GPU #%d: maximum total warps (BxW): %d", (int) device_map[thr_id], MAXTW); for (int GRID_BLOCKS = MINB; !abort_flag && GRID_BLOCKS <= MAXB; ++GRID_BLOCKS) { double Hash[32+1] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; for (WARPS_PER_BLOCK = 1; !abort_flag && WARPS_PER_BLOCK <= kernel->max_warps_per_block(); ++WARPS_PER_BLOCK) { double hash_sec = 0; if (GRID_BLOCKS * WARPS_PER_BLOCK >= MINTW && GRID_BLOCKS * WARPS_PER_BLOCK <= MAXTW) { // setup execution parameters dim3 grid(WU_PER_LAUNCH/WU_PER_BLOCK, 1, 1); dim3 threads(THREADS_PER_WU*WU_PER_BLOCK, 1, 1); struct timeval tv_start, tv_end; double tdelta = 0; checkCudaErrors(cudaDeviceSynchronize()); gettimeofday(&tv_start, NULL); int repeat = 0; do // average several measurements for better exactness { kernel->run_kernel( grid, threads, WARPS_PER_BLOCK, thr_id, NULL, d_idata, d_odata, N, LOOKUP_GAP, device_interactive[thr_id], true, device_texturecache[thr_id] ); if(cudaDeviceSynchronize() != cudaSuccess) break; ++repeat; gettimeofday(&tv_end, NULL); // for a better result averaging, measure for at least 50ms (10ms for Keccak) } while ((tdelta=(1e-6 * (tv_end.tv_usec-tv_start.tv_usec) + (tv_end.tv_sec-tv_start.tv_sec))) < tmin); if (cudaGetLastError() != cudaSuccess) continue; tdelta /= repeat; // BUGFIX: this averaging over multiple measurements was missing // for scrypt: in interactive mode only find launch configs where kernel launch times are short enough // TODO: instead we could reduce the batchsize parameter to meet the launch time requirement. if (IS_SCRYPT() && device_interactive[thr_id] && GRID_BLOCKS > 2*props.multiProcessorCount && tdelta > 1.0/30) { if (WARPS_PER_BLOCK == 1) goto skip; else goto skip2; } hash_sec = (double)WU_PER_LAUNCH / tdelta; Hash[WARPS_PER_BLOCK] = hash_sec; if (hash_sec > best_hash_sec) { optimal_blocks = GRID_BLOCKS; best_hash_sec = hash_sec; best_wpb = WARPS_PER_BLOCK; } } } skip2: if (opt_debug) { if (GRID_BLOCKS == MINB) { char line[512] = " "; for (int i=1; i<=kernel->max_warps_per_block(); ++i) { char tmp[16]; sprintf(tmp, i < 10 ? " x%-2d" : " x%-2d ", i); strcat(line, tmp); if (cw == 80 && (i % 8 == 0 && i != kernel->max_warps_per_block())) strcat(line, "\n "); } applog(LOG_DEBUG, line); } char kMGT = ' '; bool flag; for (int j=0; j < 4; ++j) { flag=false; for (int i=1; i<=kernel->max_warps_per_block(); flag|=Hash[i] >= 1000, i++); if (flag) for (int i=1; i<=kernel->max_warps_per_block(); Hash[i] /= 1000, i++); else break; if (kMGT == ' ') kMGT = 'k'; else if (kMGT == 'k') kMGT = 'M'; else if (kMGT == 'M') kMGT = 'G'; else if (kMGT == 'G') kMGT = 'T'; } const char *format = "%5.4f%c"; flag = false; for (int i=1; i<=kernel->max_warps_per_block(); flag|=Hash[i] >= 1, i++); if (flag) format = "%5.3f%c"; flag = false; for (int i=1; i<=kernel->max_warps_per_block(); flag|=Hash[i] >= 10, i++); if (flag) format = "%5.2f%c"; flag = false; for (int i=1; i<=kernel->max_warps_per_block(); flag|=Hash[i] >= 100, i++); if (flag) format = "%5.1f%c"; char line[512]; sprintf(line, "%3d:", GRID_BLOCKS); for (int i=1; i<=kernel->max_warps_per_block(); ++i) { char tmp[16]; if (Hash[i]>0) sprintf(tmp, format, Hash[i], (imax_warps_per_block())?'|':' '); else sprintf(tmp, " %c", (imax_warps_per_block())?'|':' '); strcat(line, tmp); if (cw == 80 && (i % 8 == 0 && i != kernel->max_warps_per_block())) strcat(line, "\n "); } int n = strlen(line)-1; line[n++] = '|'; line[n++] = ' '; line[n++] = kMGT; line[n++] = '\0'; strcat(line, "H/s"); applog(LOG_DEBUG, line); } } skip: ; } checkCudaErrors(cudaFree(d_odata)); checkCudaErrors(cudaFree(d_idata)); WARPS_PER_BLOCK = best_wpb; applog(LOG_INFO, "GPU #%d: %7.2f hash/s with configuration %c%dx%d", device_map[thr_id], best_hash_sec, kernel->get_identifier(), optimal_blocks, WARPS_PER_BLOCK); } else { // Heuristics to find a good kernel launch configuration // base the initial block estimate on the number of multiprocessors int device_cores = props.multiProcessorCount * _ConvertSMVer2Cores(props.major, props.minor); // defaults, in case nothing else is chosen below optimal_blocks = 4 * device_cores / WU_PER_WARP; WARPS_PER_BLOCK = 2; // Based on compute capability, pick a known good block x warp configuration. if (props.major >= 3) { if (props.major == 3 && props.minor == 5) // GK110 (Tesla K20X, K20, GeForce GTX TITAN) { // TODO: what to do with Titan and Tesla K20(X)? // for now, do the same as for GTX 660Ti (2GB) optimal_blocks = (int)(optimal_blocks * 0.8809524); WARPS_PER_BLOCK = 2; } else // GK104, GK106, GK107 ... { if (MAXWARPS[thr_id] > (int)(optimal_blocks * 1.7261905) * 2) { // this results in 290x2 configuration on GTX 660Ti (3GB) // but it requires 3GB memory on the card! optimal_blocks = (int)(optimal_blocks * 1.7261905); WARPS_PER_BLOCK = 2; } else { // this results in 148x2 configuration on GTX 660Ti (2GB) optimal_blocks = (int)(optimal_blocks * 0.8809524); WARPS_PER_BLOCK = 2; } } } // 1st generation Fermi (compute 2.0) GF100, GF110 else if (props.major == 2 && props.minor == 0) { // this results in a 60x4 configuration on GTX 570 optimal_blocks = 4 * device_cores / WU_PER_WARP; WARPS_PER_BLOCK = 4; } // 2nd generation Fermi (compute 2.1) GF104,106,108,114,116 else if (props.major == 2 && props.minor == 1) { // this results in a 56x2 configuration on GTX 460 optimal_blocks = props.multiProcessorCount * 8; WARPS_PER_BLOCK = 2; } // in case we run out of memory with the automatically chosen configuration, // first back off with WARPS_PER_BLOCK, then reduce optimal_blocks. if (WARPS_PER_BLOCK==3 && optimal_blocks * WARPS_PER_BLOCK > MAXWARPS[thr_id]) WARPS_PER_BLOCK = 2; while (optimal_blocks > 0 && optimal_blocks * WARPS_PER_BLOCK > MAXWARPS[thr_id]) optimal_blocks--; } } applog(LOG_INFO, "GPU #%d: using launch configuration %c%dx%d", device_map[thr_id], kernel->get_identifier(), optimal_blocks, WARPS_PER_BLOCK); if (device_singlememory[thr_id]) { if (MAXWARPS[thr_id] != optimal_blocks * WARPS_PER_BLOCK) { MAXWARPS[thr_id] = optimal_blocks * WARPS_PER_BLOCK; if (device_texturecache[thr_id] == 1) kernel->unbindtexture_1D(); else if (device_texturecache[thr_id] == 2) kernel->unbindtexture_2D(); checkCudaErrors(cudaFree(d_V)); d_V = NULL; cudaGetLastError(); // clear the error state cudaMalloc((void **)&d_V, (size_t)SCRATCH * WU_PER_WARP * MAXWARPS[thr_id] * sizeof(uint32_t)); if (cudaGetLastError() == cudaSuccess) { for (int i=0; i < MAXWARPS[thr_id]; ++i) h_V[thr_id][i] = d_V + SCRATCH * WU_PER_WARP * i; if (device_texturecache[thr_id] == 1) { // bind linear memory to a 1D texture reference if (kernel->get_texel_width() == 2) kernel->bindtexture_1D(d_V, SCRATCH * WU_PER_WARP * MAXWARPS[thr_id] * sizeof(uint32_t)); else kernel->bindtexture_1D(d_V, SCRATCH * WU_PER_WARP * MAXWARPS[thr_id] * sizeof(uint32_t)); } else if (device_texturecache[thr_id] == 2) { // bind pitch linear memory to a 2D texture reference if (kernel->get_texel_width() == 2) kernel->bindtexture_2D(d_V, SCRATCH/2, WU_PER_WARP * MAXWARPS[thr_id], SCRATCH*sizeof(uint32_t)); else kernel->bindtexture_2D(d_V, SCRATCH/4, WU_PER_WARP * MAXWARPS[thr_id], SCRATCH*sizeof(uint32_t)); } // update pointers to scratch buffer in constant memory after reallocation kernel->set_scratchbuf_constants(MAXWARPS[thr_id], h_V[thr_id]); } else { applog(LOG_ERR, "GPU #%d: Unable to allocate enough memory for launch config '%s'.", device_map[thr_id], device_config[thr_id]); } } } else { // back off unnecessary memory allocations to have some breathing room while (MAXWARPS[thr_id] > 0 && MAXWARPS[thr_id] > optimal_blocks * WARPS_PER_BLOCK) { (MAXWARPS[thr_id])--; checkCudaErrors(cudaFree(h_V[thr_id][MAXWARPS[thr_id]]-h_V_extra[thr_id][MAXWARPS[thr_id]])); h_V[thr_id][MAXWARPS[thr_id]] = NULL; h_V_extra[thr_id][MAXWARPS[thr_id]] = 0; } } return optimal_blocks; } void cuda_scrypt_HtoD(int thr_id, uint32_t *X, int stream) { unsigned int GRID_BLOCKS = context_blocks[thr_id]; unsigned int WARPS_PER_BLOCK = context_wpb[thr_id]; unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu(); unsigned int mem_size = WU_PER_LAUNCH * sizeof(uint32_t) * 32; // copy host memory to device cudaMemcpyAsync(context_idata[stream][thr_id], X, mem_size, cudaMemcpyHostToDevice, context_streams[stream][thr_id]); } void cuda_scrypt_serialize(int thr_id, int stream) { // if the device can concurrently execute multiple kernels, then we must // wait for the serialization event recorded by the other stream if (context_concurrent[thr_id] || device_interactive[thr_id]) cudaStreamWaitEvent(context_streams[stream][thr_id], context_serialize[(stream+1)&1][thr_id], 0); } void cuda_scrypt_done(int thr_id, int stream) { // record the serialization event in the current stream cudaEventRecord(context_serialize[stream][thr_id], context_streams[stream][thr_id]); } void cuda_scrypt_flush(int thr_id, int stream) { // flush the work queue (required for WDDM drivers) cudaStreamSynchronize(context_streams[stream][thr_id]); } void cuda_scrypt_core(int thr_id, int stream, unsigned int N) { unsigned int GRID_BLOCKS = context_blocks[thr_id]; unsigned int WARPS_PER_BLOCK = context_wpb[thr_id]; unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu(); unsigned int LOOKUP_GAP = device_lookup_gap[thr_id]; // setup execution parameters dim3 grid(WU_PER_LAUNCH/WU_PER_BLOCK, 1, 1); dim3 threads(THREADS_PER_WU*WU_PER_BLOCK, 1, 1); context_kernel[thr_id]->run_kernel(grid, threads, WARPS_PER_BLOCK, thr_id, context_streams[stream][thr_id], context_idata[stream][thr_id], context_odata[stream][thr_id], N, LOOKUP_GAP, device_interactive[thr_id], opt_benchmark, device_texturecache[thr_id] ); } void cuda_scrypt_DtoH(int thr_id, uint32_t *X, int stream, bool postSHA) { unsigned int GRID_BLOCKS = context_blocks[thr_id]; unsigned int WARPS_PER_BLOCK = context_wpb[thr_id]; unsigned int THREADS_PER_WU = context_kernel[thr_id]->threads_per_wu(); unsigned int mem_size = WU_PER_LAUNCH * sizeof(uint32_t) * (postSHA ? 8 : 32); // copy result from device to host (asynchronously) checkCudaErrors(cudaMemcpyAsync(X, postSHA ? context_hash[stream][thr_id] : context_odata[stream][thr_id], mem_size, cudaMemcpyDeviceToHost, context_streams[stream][thr_id])); } bool cuda_scrypt_sync(int thr_id, int stream) { cudaError_t err; uint32_t wait_us = 0; if (device_interactive[thr_id] && !opt_benchmark) { // For devices that also do desktop rendering or compositing, we want to free up some time slots. // That requires making a pause in work submission when there is no active task on the GPU, // and Device Synchronize ensures that. // this call was replaced by the loop below to workaround the high CPU usage issue //err = cudaDeviceSynchronize(); while((err = cudaStreamQuery(context_streams[0][thr_id])) == cudaErrorNotReady || (err == cudaSuccess && (err = cudaStreamQuery(context_streams[1][thr_id])) == cudaErrorNotReady)) { usleep(50); wait_us+=50; } usleep(50); wait_us+=50; } else { // this call was replaced by the loop below to workaround the high CPU usage issue //err = cudaStreamSynchronize(context_streams[stream][thr_id]); while((err = cudaStreamQuery(context_streams[stream][thr_id])) == cudaErrorNotReady) { usleep(50); wait_us+=50; } } if (err != cudaSuccess) { if (!abort_flag) applog(LOG_ERR, "GPU #%d: CUDA error `%s` while waiting the kernel.", device_map[thr_id], cudaGetErrorString(err)); return false; } //if (opt_debug) { // applog(LOG_DEBUG, "GPU #%d: %s %u us", device_map[thr_id], __FUNCTION__, wait_us); //} return true; } uint32_t* cuda_transferbuffer(int thr_id, int stream) { return context_X[stream][thr_id]; } uint32_t* cuda_hashbuffer(int thr_id, int stream) { return context_H[stream][thr_id]; }