/** * Blake-256 Cuda Kernel (Tested on SM 5.0) * * Tanguy Pruvot - Aug. 2014 */ #include "miner.h" extern "C" { #include "sph/sph_blake.h" #include #include } /* hash by cpu with blake 256 */ extern "C" void blake32hash(void *output, const void *input) { unsigned char hash[64]; sph_blake256_context ctx; sph_blake256_init(&ctx); sph_blake256(&ctx, input, 80); sph_blake256_close(&ctx, hash); memcpy(output, hash, 32); } #include "cuda_helper.h" #if __CUDA_ARCH__ < 350 // Kepler (Compute 3.0) + Host #define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) #else // Kepler (Compute 3.5 / 5.0) #define ROTR32(x, n) __funnelshift_r( (x), (x), (n) ) #endif // in cpu-miner.c extern bool opt_benchmark; extern bool opt_debug; extern int device_map[8]; extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); // shared for 8 threads of addresses (cudaMalloc) uint32_t* d_hash[8]; __constant__ static uint32_t pTarget[8]; __constant__ static uint32_t c_PaddedMessage80[32]; // padded message (80 bytes + padding) static uint32_t *d_resNounce[8]; static uint32_t *h_resNounce[8]; __constant__ static uint8_t c_sigma[16][16]; const uint8_t host_sigma[16][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } }; __device__ __constant__ static const uint32_t c_IV256[8] = { SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A), SPH_C32(0x510E527F), SPH_C32(0x9B05688C), SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19) }; __device__ __constant__ static const uint32_t c_u256[16] = { SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344), SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) }; #if 0 #define GS(m0, m1, c0, c1, a, b, c, d) do { \ a = SPH_T32(a + b + (m0 ^ c1)); \ d = SPH_ROTR32(d ^ a, 16); \ c = SPH_T32(c + d); \ b = SPH_ROTR32(b ^ c, 12); \ a = SPH_T32(a + b + (m1 ^ c0)); \ d = SPH_ROTR32(d ^ a, 8); \ c = SPH_T32(c + d); \ b = SPH_ROTR32(b ^ c, 7); \ } while (0) #define ROUND_S(r) do { \ GS(Mx(r, 0x0), Mx(r, 0x1), CSx(r, 0x0), CSx(r, 0x1), v[0], v[4], v[0x8], v[0xC]); \ GS(Mx(r, 0x2), Mx(r, 0x3), CSx(r, 0x2), CSx(r, 0x3), v[1], v[5], v[0x9], v[0xD]); \ GS(Mx(r, 0x4), Mx(r, 0x5), CSx(r, 0x4), CSx(r, 0x5), v[2], v[6], v[0xA], v[0xE]); \ GS(Mx(r, 0x6), Mx(r, 0x7), CSx(r, 0x6), CSx(r, 0x7), v[3], v[7], v[0xB], v[0xF]); \ GS(Mx(r, 0x8), Mx(r, 0x9), CSx(r, 0x8), CSx(r, 0x9), v[0], v[5], v[0xA], v[0xF]); \ GS(Mx(r, 0xA), Mx(r, 0xB), CSx(r, 0xA), CSx(r, 0xB), v[1], v[6], v[0xB], v[0xC]); \ GS(Mx(r, 0xC), Mx(r, 0xD), CSx(r, 0xC), CSx(r, 0xD), v[2], v[7], v[0x8], v[0xD]); \ GS(Mx(r, 0xE), Mx(r, 0xF), CSx(r, 0xE), CSx(r, 0xF), v[3], v[4], v[0x9], v[0xE]); \ } while (0) #endif #define GS(a,b,c,d,e) { \ v[a] += (m[sigma[i][e]] ^ u256[sigma[i][e+1]]) + v[b]; \ v[d] = ROTR32(v[d] ^ v[a], 16); \ v[c] += v[d]; \ v[b] = ROTR32(v[b] ^ v[c], 12); \ \ v[a] += (m[sigma[i][e+1]] ^ u256[sigma[i][e]]) + v[b]; \ v[d] = ROTR32(v[d] ^ v[a], 8); \ v[c] += v[d]; \ v[b] = ROTR32(v[b] ^ v[c], 7); \ } __device__ static void blake256_compress(uint32_t *h, uint32_t *block, uint8_t ((*sigma)[16]), const uint32_t *u256, const uint32_t T0, uint8_t nullt = 1) { uint32_t /* __align__(8) */ v[16]; uint32_t /* __align__(8) */ m[16]; //#pragma unroll for (int i = 0; i < 16; ++i) { m[i] = cuda_swab32(block[i]); //m[i] = block[i]; } #pragma unroll for(int i = 0; i < 8; i++) v[i] = h[i]; v[ 8] = u256[0]; v[ 9] = u256[1]; v[10] = u256[2]; v[11] = u256[3]; v[12] = u256[4] ^ T0; v[13] = u256[5] ^ T0; v[14] = u256[6]; v[15] = u256[7]; // on a 80-bytes null buffer : // first : v = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, ...} // second : v = {0xb5bfb2f9, 0x14cfcc63, 0xb85c549c, 0xc9b4184e, ..., 0x299f3350, 0x082efa98, 0xec4e6c89} //#pragma unroll for (int i = 0; i < 14; i++) { /* column step */ GS(0, 4, 0x8, 0xC, 0); GS(1, 5, 0x9, 0xD, 2); GS(2, 6, 0xA, 0xE, 4); GS(3, 7, 0xB, 0xF, 6); /* diagonal step */ GS(0, 5, 0xA, 0xF, 0x8); GS(1, 6, 0xB, 0xC, 0xA); GS(2, 7, 0x8, 0xD, 0xC); GS(3, 4, 0x9, 0xE, 0xE); } //#pragma unroll 16 for(int i = 0; i < 16; i++) h[i % 8] ^= v[i]; //second H0 = 0x0c7b1594 ... H7 = 0x9051b305 } #if __CUDA_ARCH__ >= 200 #if (__NV_POINTER_SIZE == 64) # define SZCT uint64_t #else # define SZCT uint32_t #endif extern __device__ __device_builtin__ void __nvvm_memset(uint8_t *, unsigned char, SZCT, int); #endif __global__ void blake256_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t /* __align__(16) */ h[8]; uint32_t /* __align__(16) */ msg[16]; const uint32_t nounce = startNounce + thread; #pragma unroll for(int i=0; i<8; i++) h[i] = c_IV256[i]; blake256_compress(h, c_PaddedMessage80, c_sigma, c_u256, 0x200); /* 512 = 0x200 */ // ------ Close: Bytes 64 to 80 ------ #if 0 /* __CUDA_ARCH__ >= 200 */ __nvvm_memset((uint8_t*)(&msg[4]), 0, sizeof(msg)-16, 16); #else msg[5] = 0; msg[6] = 0; msg[7] = 0; msg[8] = 0; msg[9] = 0; msg[10] = 0; msg[11] = 0; msg[12] = 0; msg[14] = 0; #endif msg[0] = c_PaddedMessage80[16]; msg[1] = c_PaddedMessage80[17]; msg[2] = c_PaddedMessage80[18]; msg[3] = cuda_swab32(nounce); // here or at 80 ? msg[4] = 0x80; // uchar[16] after buffer msg[13] = 0x01000000; //((uint8_t*)msg)[55] = 1; // uchar[17 to 55] msg[15] = 0x80020000; // 60-63 0x280 //h => {0xb5bfb2f9, 0x14cfcc63, 0xb85c549c, 0xc9b4184e, 0x67dfc6ce, 0x29e9904b, 0xd59ee74e, 0xfaa9c653} //msg {0, 0, 0, 0, 0x80, 0...} blake256_compress(h, msg, c_sigma, c_u256, 0x280); // or 0x80 //h => {0x0c7b1594, 0x52328517, 0x463db487, 0xdf5e39b7, 0x1322afaf, 0x14ed562c, 0xe9d18d7d, 0x9051b305} uint32_t *outHash = (uint32_t*) outputHash + 16*thread; // 16 = 4 x sizeof(uint32) //#pragma unroll for (int i=0; i < 8; i++) { outHash[i] = cuda_swab32(h[i]); } } } __host__ void blake256_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash, int order) { const int threadsperblock = 256; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; blake256_gpu_hash_80<<>>(threads, startNounce, d_outputHash); MyStreamSynchronize(NULL, order, thr_id); } __global__ void gpu_check_hash_64(int threads, uint32_t startNounce, uint32_t *g_nonceVector, uint32_t *g_hash, uint32_t *resNounce) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); int hashPosition = nounce - startNounce; uint32_t *inpHash = &g_hash[16 * hashPosition]; uint32_t hash[8]; #pragma unroll 8 for (int i=0; i < 8; i++) hash[i] = inpHash[i]; int i, position = -1; bool rc = true; #pragma unroll 8 for (i = 7; i >= 0; i--) { if (hash[i] > pTarget[i] && position < i) { position = i; rc = false; } if (hash[i] < pTarget[i] && position < i) { position = i; rc = true; } } if(rc && resNounce[0] > nounce) resNounce[0] = nounce; } } __host__ uint32_t cpu_check_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order) { uint32_t result = 0xffffffff; const int threadsperblock = 256; cudaMemset(d_resNounce[thr_id], 0xff, sizeof(uint32_t)); dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; gpu_check_hash_64 <<>>(threads, startNounce, d_nonceVector, d_inputHash, d_resNounce[thr_id]); MyStreamSynchronize(NULL, order, thr_id); CUDA_SAFE_CALL(cudaMemcpy(h_resNounce[thr_id], d_resNounce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost)); // cudaMemcpy() is asynch! cudaThreadSynchronize(); result = *h_resNounce[thr_id]; return result; } __host__ void blake256_cpu_init(int thr_id) { CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMallocHost(&h_resNounce[thr_id], 1*sizeof(uint32_t))); CUDA_SAFE_CALL(cudaMalloc(&d_resNounce[thr_id], 1*sizeof(uint32_t))); } __host__ void blake256_cpu_setBlock_80(uint32_t *pdata, const void *ptarget) { uint32_t PaddedMessage[32]; memcpy(PaddedMessage, pdata, 80); memset(&PaddedMessage[20], 0, 48); //for (int i=0; i<20; i++) // PaddedMessage[i] = cuda_swab32(pdata[i]); CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, ptarget, 32, 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, sizeof(PaddedMessage), 0, cudaMemcpyHostToDevice)); } #define NULLTEST 0 extern "C" int scanhash_blake32(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t endiandata[20]; const uint32_t first_nonce = pdata[19]; const int throughput = 256*256*2; static bool init[8] = {0,0,0,0,0,0,0,0}; if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0x00000f; uint32_t Htarg = ptarget[7]; if (!init[thr_id]) { CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id])); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput)); blake256_cpu_init(thr_id); init[thr_id] = true; } #if NULLTEST // dev test with a null buffer 0x00000... for (int k = 0; k < 20; k++) pdata[k] = 0; uint32_t vhash[8]; blake32hash(vhash, pdata); #endif for (int k=0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); blake256_cpu_setBlock_80(endiandata, (void*)ptarget); do { int order = 0; uint32_t foundNonce; // GPU blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); #if NULLTEST uint32_t buf[8]; memset(buf, 0, sizeof buf); CUDA_SAFE_CALL(cudaMemcpy(buf, d_hash[thr_id], sizeof buf, cudaMemcpyDeviceToHost)); CUDA_SAFE_CALL(cudaThreadSynchronize()); //applog_hash((unsigned char*)buf); #endif foundNonce = cpu_check_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); if (foundNonce != 0xffffffff) { uint32_t vhashcpu[8]; be32enc(&endiandata[19], foundNonce); blake32hash(vhashcpu, endiandata); if (opt_debug) applog(LOG_DEBUG, "foundNonce = %08x",foundNonce); if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget)) { pdata[19] = foundNonce; *hashes_done = pdata[19] - first_nonce + 1; return 1; } else { applog(LOG_INFO, "GPU #%d: result for nonce %08x does not validate on CPU!", thr_id, foundNonce); } } pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce + 1; return 0; } //#define DEBUG_ALGO __host__ int scanhash_blake256_cpu(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, uint64_t *hashes_done) { uint32_t n = pdata[19] - 1; const uint32_t first_nonce = pdata[19]; const uint32_t Htarg = ptarget[7]; uint32_t __align__(32) hash64[8]; uint32_t endiandata[32]; uint64_t htmax[] = { 0, 0xF, 0xFF, 0xFFF, 0xFFFF, 0x10000000 }; uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00, 0xFFFFF000, 0xFFFF0000, 0 }; // we need bigendian data... for (int kk=0; kk < 32; kk++) { be32enc(&endiandata[kk], ((uint32_t*)pdata)[kk]); }; #ifdef DEBUG_ALGO if (Htarg != 0) printf("[%d] Htarg=%X\n", thr_id, Htarg); #endif for (int m=0; m < 6; m++) { if (Htarg <= htmax[m]) { uint32_t mask = masks[m]; do { pdata[19] = ++n; be32enc(&endiandata[19], n); blake32hash(hash64, endiandata); #ifndef DEBUG_ALGO if ((!(hash64[7] & mask)) && fulltest(hash64, ptarget)) { *hashes_done = n - first_nonce + 1; return true; } #else if (!(n % 0x1000) && !thr_id) printf("."); if (!(hash64[7] & mask)) { printf("[%d]",thr_id); if (fulltest(hash64, ptarget)) { *hashes_done = n - first_nonce + 1; return true; } } #endif } while (n < max_nonce && !work_restart[thr_id].restart); // see blake.c if else to understand the loop on htmax => mask break; } } *hashes_done = n - first_nonce + 1; pdata[19] = n; return 0; }