/** * Blake-256 Cuda Kernel (Tested on SM 5.0) * * Tanguy Pruvot - Aug. 2014 */ #include "miner.h" extern "C" { #include "sph/sph_blake.h" #include #include } /* threads per block */ #define TPB 128 /* crc32.c */ extern "C" uint32_t crc32_u32t(const uint32_t *buf, size_t size); extern "C" int blake256_rounds = 14; /* hash by cpu with blake 256 */ extern "C" void blake256hash(void *output, const void *input, int rounds = 14) { unsigned char hash[64]; sph_blake256_context ctx; /* in sph_blake.c */ blake256_rounds = rounds; sph_blake256_init(&ctx); sph_blake256(&ctx, input, 80); sph_blake256_close(&ctx, hash); memcpy(output, hash, 32); } #include "cuda_helper.h" #define MAXU 0xffffffffU // in cpu-miner.c extern bool opt_n_threads; extern bool opt_benchmark; extern int device_map[8]; __constant__ static uint32_t __align__(32) c_Target[8]; __constant__ static uint32_t __align__(32) c_data[20]; static uint32_t *d_resNounce[8]; static uint32_t *h_resNounce[8]; static uint32_t extra_results[2] = { MAXU, MAXU }; #define USE_CACHE 1 #if USE_CACHE __device__ static uint32_t cache[8]; __device__ static uint32_t prevsum = 0; #endif /* prefer uint32_t to prevent size conversions = speed +5/10 % */ __constant__ static uint32_t __align__(32) c_sigma[16][16]; const uint32_t host_sigma[16][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } }; __device__ __constant__ static const uint32_t __align__(32) c_IV256[8] = { SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A), SPH_C32(0x510E527F), SPH_C32(0x9B05688C), SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19) }; __device__ __constant__ static const uint32_t __align__(32) c_u256[16] = { SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344), SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) }; #if 0 #define GS(m0, m1, c0, c1, a, b, c, d) do { \ a = SPH_T32(a + b + (m0 ^ c1)); \ d = SPH_ROTR32(d ^ a, 16); \ c = SPH_T32(c + d); \ b = SPH_ROTR32(b ^ c, 12); \ a = SPH_T32(a + b + (m1 ^ c0)); \ d = SPH_ROTR32(d ^ a, 8); \ c = SPH_T32(c + d); \ b = SPH_ROTR32(b ^ c, 7); \ } while (0) #define ROUND_S(r) do { \ GS(Mx(r, 0x0), Mx(r, 0x1), CSx(r, 0x0), CSx(r, 0x1), v[0], v[4], v[0x8], v[0xC]); \ GS(Mx(r, 0x2), Mx(r, 0x3), CSx(r, 0x2), CSx(r, 0x3), v[1], v[5], v[0x9], v[0xD]); \ GS(Mx(r, 0x4), Mx(r, 0x5), CSx(r, 0x4), CSx(r, 0x5), v[2], v[6], v[0xA], v[0xE]); \ GS(Mx(r, 0x6), Mx(r, 0x7), CSx(r, 0x6), CSx(r, 0x7), v[3], v[7], v[0xB], v[0xF]); \ GS(Mx(r, 0x8), Mx(r, 0x9), CSx(r, 0x8), CSx(r, 0x9), v[0], v[5], v[0xA], v[0xF]); \ GS(Mx(r, 0xA), Mx(r, 0xB), CSx(r, 0xA), CSx(r, 0xB), v[1], v[6], v[0xB], v[0xC]); \ GS(Mx(r, 0xC), Mx(r, 0xD), CSx(r, 0xC), CSx(r, 0xD), v[2], v[7], v[0x8], v[0xD]); \ GS(Mx(r, 0xE), Mx(r, 0xF), CSx(r, 0xE), CSx(r, 0xF), v[3], v[4], v[0x9], v[0xE]); \ } while (0) #endif #define GS(a,b,c,d,x) { \ const uint32_t idx1 = c_sigma[i][x]; \ const uint32_t idx2 = c_sigma[i][x+1]; \ v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \ v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \ \ v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \ v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \ } /* Second part (64-80) msg never change, store it */ __device__ __constant__ static const uint32_t __align__(32) c_Padding[16] = { 0, 0, 0, 0, 0x80000000UL, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 640, }; __device__ static void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, int blakerounds) { uint32_t /* __align__(8) */ m[16]; uint32_t /* __align__(8) */ v[16]; m[0] = block[0]; m[1] = block[1]; m[2] = block[2]; m[3] = block[3]; for (uint32_t i = 4; i < 16; i++) { m[i] = (T0 == 0x200) ? block[i] : c_Padding[i]; } //#pragma unroll 8 for(uint32_t i = 0; i < 8; i++) v[i] = h[i]; v[ 8] = c_u256[0]; v[ 9] = c_u256[1]; v[10] = c_u256[2]; v[11] = c_u256[3]; v[12] = c_u256[4] ^ T0; v[13] = c_u256[5] ^ T0; v[14] = c_u256[6]; v[15] = c_u256[7]; for (int i = 0; i < blakerounds; i++) { /* column step */ GS(0, 4, 0x8, 0xC, 0x0); GS(1, 5, 0x9, 0xD, 0x2); GS(2, 6, 0xA, 0xE, 0x4); GS(3, 7, 0xB, 0xF, 0x6); /* diagonal step */ GS(0, 5, 0xA, 0xF, 0x8); GS(1, 6, 0xB, 0xC, 0xA); GS(2, 7, 0x8, 0xD, 0xC); GS(3, 4, 0x9, 0xE, 0xE); } //#pragma unroll 16 for (uint32_t i = 0; i < 16; i++) { uint32_t j = i % 8; h[j] ^= v[i]; } } __global__ void blake256_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, const int blakerounds, const int crcsum) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint32_t nounce = startNounce + thread; uint32_t h[8]; #pragma unroll for(int i=0; i<8; i++) { h[i] = c_IV256[i]; } #if !USE_CACHE blake256_compress(h, c_data, 512, blakerounds); #else if (crcsum != prevsum) { prevsum = crcsum; blake256_compress(h, c_data, 512, blakerounds); #pragma unroll for(int i=0; i<8; i++) { cache[i] = h[i]; } } else { #pragma unroll for(int i=0; i<8; i++) { h[i] = cache[i]; } } #endif // ------ Close: Bytes 64 to 80 ------ uint32_t ending[4]; ending[0] = c_data[16]; ending[1] = c_data[17]; ending[2] = c_data[18]; ending[3] = nounce; /* our tested value */ blake256_compress(h, ending, 640, blakerounds); for (int i = 7; i >= 0; i--) { uint32_t hash = cuda_swab32(h[i]); if (hash > c_Target[i]) { return; } if (hash < c_Target[i]) { break; } } /* keep the smallest nounce, + extra one if found */ if (resNounce[0] > nounce) { resNounce[1] = resNounce[0]; resNounce[0] = nounce; } else resNounce[1] = nounce; } } __host__ uint32_t blake256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, const int blakerounds, const uint32_t crcsum) { const int threadsperblock = TPB; uint32_t result = MAXU; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; /* Check error on Ctrl+C or kill to prevent segfaults on exit */ if (cudaMemset(d_resNounce[thr_id], 0xff, 2*sizeof(uint32_t)) != cudaSuccess) return result; blake256_gpu_hash_80<<>>(threads, startNounce, d_resNounce[thr_id], blakerounds, crcsum); cudaDeviceSynchronize(); if (cudaSuccess == cudaMemcpy(h_resNounce[thr_id], d_resNounce[thr_id], 2*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { cudaThreadSynchronize(); result = h_resNounce[thr_id][0]; extra_results[0] = h_resNounce[thr_id][1]; } return result; } __host__ void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget) { uint32_t data[20]; memcpy(data, pdata, 80); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_Target, ptarget, 32, 0, cudaMemcpyHostToDevice)); } extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done, uint32_t blakerounds=14) { const uint32_t first_nonce = pdata[19]; static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; uint32_t throughput = min(TPB * 4096, max_nonce - first_nonce); uint32_t crcsum = MAXU; int rc = 0; if (extra_results[0] != MAXU) { // possible extra result found in previous call if (first_nonce <= extra_results[0] && max_nonce >= extra_results[0]) { pdata[19] = extra_results[0]; *hashes_done = pdata[19] - first_nonce + 1; extra_results[0] = MAXU; rc = 1; goto exit_scan; } } if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0x00000f; if (!init[thr_id]) { if (opt_n_threads > 1) { CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id])); } CUDA_SAFE_CALL(cudaMallocHost(&h_resNounce[thr_id], 2*sizeof(uint32_t))); CUDA_SAFE_CALL(cudaMalloc(&d_resNounce[thr_id], 2*sizeof(uint32_t))); init[thr_id] = true; } if (opt_debug && throughput < (TPB * 4096)) applog(LOG_DEBUG, "throughput=%u, start=%x, max=%x", throughput, first_nonce, max_nonce); blake256_cpu_setBlock_80(pdata, ptarget); #if USE_CACHE crcsum = crc32_u32t(pdata, 64); #endif do { // GPU HASH uint32_t foundNonce = blake256_cpu_hash_80(thr_id, throughput, pdata[19], blakerounds, crcsum); if (foundNonce != MAXU) { uint32_t endiandata[20]; uint32_t vhashcpu[8]; uint32_t Htarg = ptarget[7]; for (int k=0; k < 19; k++) be32enc(&endiandata[k], pdata[k]); be32enc(&endiandata[19], foundNonce); blake256hash(vhashcpu, endiandata, blakerounds); if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget)) { pdata[19] = foundNonce; rc = 1; if (extra_results[0] != MAXU) { // Rare but possible if the throughput is big be32enc(&endiandata[19], extra_results[0]); blake256hash(vhashcpu, endiandata, blakerounds); if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget)) { applog(LOG_NOTICE, "GPU found more than one result yippee!"); } else { extra_results[0] = MAXU; } } goto exit_scan; } else if (vhashcpu[7] > Htarg) { applog(LOG_WARNING, "GPU #%d: result for nounce %08x is not in range: %x > %x", thr_id, foundNonce, vhashcpu[7], Htarg); } else if (vhashcpu[6] > ptarget[6]) { applog(LOG_WARNING, "GPU #%d: hash[6] for nounce %08x is not in range: %x > %x", thr_id, foundNonce, vhashcpu[6], ptarget[6]); } else { applog(LOG_WARNING, "GPU #%d: result for nounce %08x does not validate on CPU!", thr_id, foundNonce); } } pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); exit_scan: *hashes_done = pdata[19] - first_nonce + 1; #if 0 /* reset the device to allow multiple instances * could be made in cpu-miner... check later if required */ if (opt_n_threads == 1) { CUDA_SAFE_CALL(cudaDeviceReset()); init[thr_id] = false; } #endif // wait proper end of all threads cudaDeviceSynchronize(); return rc; }