// // // PHI1612 algo // Skein + JH + CubeHash + Fugue + Gost + Echo // // Implemented by anorganix @ bitcointalk on 01.10.2017 // Feel free to send some satoshis to 1Bitcoin8tfbtGAQNFxDRUVUfFgFWKoWi9 // // extern "C" { #include "sph/sph_skein.h" #include "sph/sph_jh.h" #include "sph/sph_cubehash.h" #include "sph/sph_fugue.h" #include "sph/sph_streebog.h" #include "sph/sph_echo.h" } #include "miner.h" #include "cuda_helper.h" #include "cuda_x11.h" extern void skein512_cpu_setBlock_80(void *pdata); extern void skein512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int swap); extern void streebog_cpu_hash_64(int thr_id, uint32_t threads, uint32_t *d_hash); extern void x13_fugue512_cpu_init(int thr_id, uint32_t threads); extern void x13_fugue512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); extern void x13_fugue512_cpu_free(int thr_id); #include #include static uint32_t *d_hash[MAX_GPUS]; extern "C" void phihash(void *output, const void *input) { unsigned char _ALIGN(128) hash[128] = { 0 }; sph_skein512_context ctx_skein; sph_jh512_context ctx_jh; sph_cubehash512_context ctx_cubehash; sph_fugue512_context ctx_fugue; sph_gost512_context ctx_gost; sph_echo512_context ctx_echo; sph_skein512_init(&ctx_skein); sph_skein512(&ctx_skein, input, 80); sph_skein512_close(&ctx_skein, (void*)hash); sph_jh512_init(&ctx_jh); sph_jh512(&ctx_jh, (const void*)hash, 64); sph_jh512_close(&ctx_jh, (void*)hash); sph_cubehash512_init(&ctx_cubehash); sph_cubehash512(&ctx_cubehash, (const void*)hash, 64); sph_cubehash512_close(&ctx_cubehash, (void*)hash); sph_fugue512_init(&ctx_fugue); sph_fugue512(&ctx_fugue, (const void*)hash, 64); sph_fugue512_close(&ctx_fugue, (void*)hash); sph_gost512_init(&ctx_gost); sph_gost512(&ctx_gost, (const void*)hash, 64); sph_gost512_close(&ctx_gost, (void*)hash); sph_echo512_init(&ctx_echo); sph_echo512(&ctx_echo, (const void*)hash, 64); sph_echo512_close(&ctx_echo, (void*)hash); memcpy(output, hash, 32); } #define _DEBUG_PREFIX "phi" #include "cuda_debug.cuh" static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_phi(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; const int dev_id = device_map[thr_id]; int intensity = (device_sm[dev_id] >= 500 && !is_windows()) ? 19 : 18; // 2^18 = 262144 cuda threads if (device_sm[dev_id] >= 600) intensity = 20; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ptarget[7] = 0xf; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); quark_skein512_cpu_init(thr_id, throughput); quark_jh512_cpu_init(thr_id, throughput); x11_cubehash512_cpu_init(thr_id, throughput); x13_fugue512_cpu_init(thr_id, throughput); x11_echo512_cpu_init(thr_id, throughput); CUDA_CALL_OR_RET_X(cudaMalloc(&d_hash[thr_id], (size_t)64 * throughput), -1); cuda_check_cpu_init(thr_id, throughput); init[thr_id] = true; } uint32_t endiandata[20]; for (int k = 0; k < 20; k++) be32enc(&endiandata[k], pdata[k]); skein512_cpu_setBlock_80((void*)endiandata); cuda_check_cpu_setTarget(ptarget); do { int order = 0; skein512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], 1); order++; quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); x11_cubehash512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); x13_fugue512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); streebog_cpu_hash_64(thr_id, throughput, d_hash[thr_id]); x11_echo512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]); if (work->nonces[0] != UINT32_MAX) { const uint32_t Htarg = ptarget[7]; uint32_t _ALIGN(64) vhash[8]; be32enc(&endiandata[19], work->nonces[0]); phihash(vhash, endiandata); if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhash); work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1); *hashes_done = pdata[19] - first_nonce + throughput; if (work->nonces[1] != 0) { be32enc(&endiandata[19], work->nonces[1]); phihash(vhash, endiandata); bn_set_target_ratio(work, vhash, 1); work->valid_nonces++; pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; } else { pdata[19] = work->nonces[0] + 1; // cursor } return work->valid_nonces; } else if (vhash[7] > Htarg) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); pdata[19] = work->nonces[0] + 1; continue; } } if ((uint64_t)throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; return 0; } // cleanup extern "C" void free_phi(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); cuda_check_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }