#include #ifdef __INTELLISENSE__ /* just for vstudio code colors, only uncomment that temporary, dont commit it */ //#undef __CUDA_ARCH__ //#define __CUDA_ARCH__ 300 #endif #include "cuda_helper.h" #define TPB30 160 #define TPB20 160 #if (__CUDA_ARCH__ >= 200 && __CUDA_ARCH__ <= 350) || !defined(__CUDA_ARCH__) __constant__ static uint2 blake2b_IV_sm2[8] = { { 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a }, { 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 } }; #endif #if __CUDA_ARCH__ >= 200 && __CUDA_ARCH__ <= 350 #define reduceDuplexRow(rowIn, rowInOut, rowOut) { \ for (int i = 0; i < 8; i++) { \ for (int j = 0; j < 12; j++) \ state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \ round_lyra(state); \ for (int j = 0; j < 12; j++) \ Matrix[j + 12 * i][rowOut] ^= state[j]; \ Matrix[0 + 12 * i][rowInOut] ^= state[11]; \ Matrix[1 + 12 * i][rowInOut] ^= state[0]; \ Matrix[2 + 12 * i][rowInOut] ^= state[1]; \ Matrix[3 + 12 * i][rowInOut] ^= state[2]; \ Matrix[4 + 12 * i][rowInOut] ^= state[3]; \ Matrix[5 + 12 * i][rowInOut] ^= state[4]; \ Matrix[6 + 12 * i][rowInOut] ^= state[5]; \ Matrix[7 + 12 * i][rowInOut] ^= state[6]; \ Matrix[8 + 12 * i][rowInOut] ^= state[7]; \ Matrix[9 + 12 * i][rowInOut] ^= state[8]; \ Matrix[10+ 12 * i][rowInOut] ^= state[9]; \ Matrix[11+ 12 * i][rowInOut] ^= state[10]; \ } \ } #define absorbblock(in) { \ state[0] ^= Matrix[0][in]; \ state[1] ^= Matrix[1][in]; \ state[2] ^= Matrix[2][in]; \ state[3] ^= Matrix[3][in]; \ state[4] ^= Matrix[4][in]; \ state[5] ^= Matrix[5][in]; \ state[6] ^= Matrix[6][in]; \ state[7] ^= Matrix[7][in]; \ state[8] ^= Matrix[8][in]; \ state[9] ^= Matrix[9][in]; \ state[10] ^= Matrix[10][in]; \ state[11] ^= Matrix[11][in]; \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ round_lyra(state); \ } static __device__ __forceinline__ void Gfunc(uint2 & a, uint2 &b, uint2 &c, uint2 &d) { a += b; d ^= a; d = SWAPUINT2(d); c += d; b ^= c; b = ROR2(b, 24); a += b; d ^= a; d = ROR2(d, 16); c += d; b ^= c; b = ROR2(b, 63); } __device__ __forceinline__ static void round_lyra(uint2 *s) { Gfunc(s[0], s[4], s[8], s[12]); Gfunc(s[1], s[5], s[9], s[13]); Gfunc(s[2], s[6], s[10], s[14]); Gfunc(s[3], s[7], s[11], s[15]); Gfunc(s[0], s[5], s[10], s[15]); Gfunc(s[1], s[6], s[11], s[12]); Gfunc(s[2], s[7], s[8], s[13]); Gfunc(s[3], s[4], s[9], s[14]); } __device__ __forceinline__ void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[16], uint2 Matrix[96][8]) { #if __CUDA_ARCH__ > 500 #pragma unroll #endif for (int i = 0; i < 8; i++) { #pragma unroll for (int j = 0; j < 12; j++) state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; round_lyra(state); #pragma unroll for (int j = 0; j < 12; j++) Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j]; Matrix[0 + 12 * i][rowInOut] ^= state[11]; Matrix[1 + 12 * i][rowInOut] ^= state[0]; Matrix[2 + 12 * i][rowInOut] ^= state[1]; Matrix[3 + 12 * i][rowInOut] ^= state[2]; Matrix[4 + 12 * i][rowInOut] ^= state[3]; Matrix[5 + 12 * i][rowInOut] ^= state[4]; Matrix[6 + 12 * i][rowInOut] ^= state[5]; Matrix[7 + 12 * i][rowInOut] ^= state[6]; Matrix[8 + 12 * i][rowInOut] ^= state[7]; Matrix[9 + 12 * i][rowInOut] ^= state[8]; Matrix[10 + 12 * i][rowInOut] ^= state[9]; Matrix[11 + 12 * i][rowInOut] ^= state[10]; } } __global__ __launch_bounds__(TPB30, 1) void lyra2_gpu_hash_32_sm2(uint32_t threads, uint64_t *g_hash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint2 state[16]; #pragma unroll for (int i = 0; i<4; i++) { LOHI(state[i].x, state[i].y, g_hash[threads*i + thread]); } //password #pragma unroll for (int i = 0; i<4; i++) { state[i + 4] = state[i]; } //salt #pragma unroll for (int i = 0; i<8; i++) { state[i + 8] = blake2b_IV_sm2[i]; } // blake2blyra x2 //#pragma unroll 24 for (int i = 0; i<24; i++) { round_lyra(state); } //because 12 is not enough uint2 Matrix[96][8]; // not cool // reducedSqueezeRow0 #pragma unroll 8 for (int i = 0; i < 8; i++) { #pragma unroll 12 for (int j = 0; j<12; j++) { Matrix[j + 84 - 12 * i][0] = state[j]; } round_lyra(state); } // reducedSqueezeRow1 #pragma unroll 8 for (int i = 0; i < 8; i++) { #pragma unroll 12 for (int j = 0; j<12; j++) { state[j] ^= Matrix[j + 12 * i][0]; } round_lyra(state); #pragma unroll 12 for (int j = 0; j<12; j++) { Matrix[j + 84 - 12 * i][1] = Matrix[j + 12 * i][0] ^ state[j]; } } reduceDuplexRowSetup(1, 0, 2, state, Matrix); reduceDuplexRowSetup(2, 1, 3, state, Matrix); reduceDuplexRowSetup(3, 0, 4, state, Matrix); reduceDuplexRowSetup(4, 3, 5, state, Matrix); reduceDuplexRowSetup(5, 2, 6, state, Matrix); reduceDuplexRowSetup(6, 1, 7, state, Matrix); uint32_t rowa; rowa = state[0].x & 7; reduceDuplexRow(7, rowa, 0); rowa = state[0].x & 7; reduceDuplexRow(0, rowa, 3); rowa = state[0].x & 7; reduceDuplexRow(3, rowa, 6); rowa = state[0].x & 7; reduceDuplexRow(6, rowa, 1); rowa = state[0].x & 7; reduceDuplexRow(1, rowa, 4); rowa = state[0].x & 7; reduceDuplexRow(4, rowa, 7); rowa = state[0].x & 7; reduceDuplexRow(7, rowa, 2); rowa = state[0].x & 7; reduceDuplexRow(2, rowa, 5); absorbblock(rowa); #pragma unroll for (int i = 0; i<4; i++) { g_hash[threads*i + thread] = devectorize(state[i]); } } //thread } #else /* if __CUDA_ARCH__ < 200 .. host */ __global__ void lyra2_gpu_hash_32_sm2(uint32_t threads, uint64_t *g_hash) {} #endif // ------------------------------------------------------------------------------------------------------------------------- // lyra2 cant be used as-is in 512-bits hash chains, tx to djm for these weird offsets since first lyra2 algo... #if __CUDA_ARCH__ >= 200 && __CUDA_ARCH__ <= 350 __global__ __launch_bounds__(128, 8) void hash64_to_lyra32_gpu(const uint32_t threads, const uint32_t* d_hash64, uint2* d_hash_lyra, const uint32_t round) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const size_t offset = (size_t) 16 * thread + (round * 8U); uint2 *psrc = (uint2*) (&d_hash64[offset]); uint2 *pdst = (uint2*) (&d_hash_lyra[thread]); pdst[threads*0] = __ldg(&psrc[0]); pdst[threads*1] = __ldg(&psrc[1]); pdst[threads*2] = __ldg(&psrc[2]); pdst[threads*3] = __ldg(&psrc[3]); } } __global__ __launch_bounds__(128, 8) void hash64_from_lyra32_gpu(const uint32_t threads, const uint32_t* d_hash64, uint2* d_hash_lyra, const uint32_t round) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const size_t offset = (size_t) 16 * thread + (round * 8U); uint2 *psrc = (uint2*) (&d_hash_lyra[thread]); uint2 *pdst = (uint2*) (&d_hash64[offset]); pdst[0] = psrc[0]; pdst[1] = psrc[threads*1]; pdst[2] = psrc[threads*2]; pdst[3] = psrc[threads*3]; } } #else /* if __CUDA_ARCH__ < 200 .. host */ __global__ void hash64_to_lyra32_gpu(const uint32_t threads, const uint32_t* d_hash64, uint2* d_hash_lyra, const uint32_t round) {} __global__ void hash64_from_lyra32_gpu(const uint32_t threads, const uint32_t* d_hash64, uint2* d_hash_lyra, const uint32_t round) {} #endif __host__ void hash64_to_lyra32(int thr_id, const uint32_t threads, uint32_t* d_hash64, uint64_t* d_hash_lyra, const uint32_t round) { const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); hash64_to_lyra32_gpu <<>> (threads, d_hash64, (uint2*) d_hash_lyra, round); } __host__ void hash64_from_lyra32(int thr_id, const uint32_t threads, uint32_t* d_hash64, uint64_t* d_hash_lyra, const uint32_t round) { const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); hash64_from_lyra32_gpu <<>> (threads, d_hash64, (uint2*) d_hash_lyra, round); }