/** * Lyra2 (v1) cuda implementation based on djm34 work * tpruvot@github 2015, Nanashi 08/2016 (from 1.8-r2) * tpruvot@github 2018 for phi2 double lyra2-32 support */ #include #include #define TPB52 32 #include "cuda_lyra2_sm2.cuh" #include "cuda_lyra2_sm5.cuh" #ifdef __INTELLISENSE__ /* just for vstudio code colors */ #define __CUDA_ARCH__ 520 #endif #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ > 500 #include "cuda_lyra2_vectors.h" #ifdef __INTELLISENSE__ /* just for vstudio code colors */ __device__ uint32_t __shfl(uint32_t a, uint32_t b, uint32_t c); #endif #define Nrow 8 #define Ncol 8 #define memshift 3 #define BUF_COUNT 0 __device__ uint2 *DMatrix; __device__ __forceinline__ void LD4S(uint2 res[3], const int row, const int col, const int thread, const int threads) { #if BUF_COUNT != 8 extern __shared__ uint2 shared_mem[]; const int s0 = (Ncol * (row - BUF_COUNT) + col) * memshift; #endif #if BUF_COUNT != 0 const int d0 = (memshift *(Ncol * row + col) * threads + thread)*blockDim.x + threadIdx.x; #endif #if BUF_COUNT == 8 #pragma unroll for (int j = 0; j < 3; j++) res[j] = *(DMatrix + d0 + j * threads * blockDim.x); #elif BUF_COUNT == 0 #pragma unroll for (int j = 0; j < 3; j++) res[j] = shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; #else if (row < BUF_COUNT) { #pragma unroll for (int j = 0; j < 3; j++) res[j] = *(DMatrix + d0 + j * threads * blockDim.x); } else { #pragma unroll for (int j = 0; j < 3; j++) res[j] = shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; } #endif } __device__ __forceinline__ void ST4S(const int row, const int col, const uint2 data[3], const int thread, const int threads) { #if BUF_COUNT != 8 extern __shared__ uint2 shared_mem[]; const int s0 = (Ncol * (row - BUF_COUNT) + col) * memshift; #endif #if BUF_COUNT != 0 const int d0 = (memshift *(Ncol * row + col) * threads + thread)*blockDim.x + threadIdx.x; #endif #if BUF_COUNT == 8 #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + d0 + j * threads * blockDim.x) = data[j]; #elif BUF_COUNT == 0 #pragma unroll for (int j = 0; j < 3; j++) shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data[j]; #else if (row < BUF_COUNT) { #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + d0 + j * threads * blockDim.x) = data[j]; } else { #pragma unroll for (int j = 0; j < 3; j++) shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data[j]; } #endif } #if __CUDA_ARCH__ >= 300 __device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) { return __shfl(a, b, c); } __device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) { return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c)); } __device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) { a1 = WarpShuffle(a1, b1, c); a2 = WarpShuffle(a2, b2, c); a3 = WarpShuffle(a3, b3, c); } #else __device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) { extern __shared__ uint2 shared_mem[]; const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; uint32_t *_ptr = (uint32_t*)shared_mem; __threadfence_block(); uint32_t buf = _ptr[thread]; _ptr[thread] = a; __threadfence_block(); uint32_t result = _ptr[(thread&~(c - 1)) + (b&(c - 1))]; __threadfence_block(); _ptr[thread] = buf; __threadfence_block(); return result; } __device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) { extern __shared__ uint2 shared_mem[]; const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; __threadfence_block(); uint2 buf = shared_mem[thread]; shared_mem[thread] = a; __threadfence_block(); uint2 result = shared_mem[(thread&~(c - 1)) + (b&(c - 1))]; __threadfence_block(); shared_mem[thread] = buf; __threadfence_block(); return result; } __device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) { extern __shared__ uint2 shared_mem[]; const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; __threadfence_block(); uint2 buf = shared_mem[thread]; shared_mem[thread] = a1; __threadfence_block(); a1 = shared_mem[(thread&~(c - 1)) + (b1&(c - 1))]; __threadfence_block(); shared_mem[thread] = a2; __threadfence_block(); a2 = shared_mem[(thread&~(c - 1)) + (b2&(c - 1))]; __threadfence_block(); shared_mem[thread] = a3; __threadfence_block(); a3 = shared_mem[(thread&~(c - 1)) + (b3&(c - 1))]; __threadfence_block(); shared_mem[thread] = buf; __threadfence_block(); } #endif #if __CUDA_ARCH__ > 500 || !defined(__CUDA_ARCH) static __device__ __forceinline__ void Gfunc(uint2 &a, uint2 &b, uint2 &c, uint2 &d) { a += b; uint2 tmp = d; d.y = a.x ^ tmp.x; d.x = a.y ^ tmp.y; c += d; b ^= c; b = ROR24(b); a += b; d ^= a; d = ROR16(d); c += d; b ^= c; b = ROR2(b, 63); } #endif __device__ __forceinline__ void round_lyra(uint2 s[4]) { Gfunc(s[0], s[1], s[2], s[3]); WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 1, threadIdx.x + 2, threadIdx.x + 3, 4); Gfunc(s[0], s[1], s[2], s[3]); WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 3, threadIdx.x + 2, threadIdx.x + 1, 4); } static __device__ __forceinline__ void round_lyra(uint2x4* s) { Gfunc(s[0].x, s[1].x, s[2].x, s[3].x); Gfunc(s[0].y, s[1].y, s[2].y, s[3].y); Gfunc(s[0].z, s[1].z, s[2].z, s[3].z); Gfunc(s[0].w, s[1].w, s[2].w, s[3].w); Gfunc(s[0].x, s[1].y, s[2].z, s[3].w); Gfunc(s[0].y, s[1].z, s[2].w, s[3].x); Gfunc(s[0].z, s[1].w, s[2].x, s[3].y); Gfunc(s[0].w, s[1].x, s[2].y, s[3].z); } static __device__ __forceinline__ void reduceDuplex(uint2 state[4], uint32_t thread, const uint32_t threads) { uint2 state1[3]; #pragma unroll for (int i = 0; i < Nrow; i++) { ST4S(0, Ncol - i - 1, state, thread, threads); round_lyra(state); } #pragma unroll 4 for (int i = 0; i < Nrow; i++) { LD4S(state1, 0, i, thread, threads); for (int j = 0; j < 3; j++) state[j] ^= state1[j]; round_lyra(state); for (int j = 0; j < 3; j++) state1[j] ^= state[j]; ST4S(1, Ncol - i - 1, state1, thread, threads); } } static __device__ __forceinline__ void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4], uint32_t thread, const uint32_t threads) { uint2 state1[3], state2[3]; #pragma unroll 1 for (int i = 0; i < Nrow; i++) { LD4S(state1, rowIn, i, thread, threads); LD4S(state2, rowInOut, i, thread, threads); for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); #pragma unroll for (int j = 0; j < 3; j++) state1[j] ^= state[j]; ST4S(rowOut, Ncol - i - 1, state1, thread, threads); // simultaneously receive data from preceding thread and send data to following thread uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } ST4S(rowInOut, i, state2, thread, threads); } } static __device__ __forceinline__ void reduceDuplexRowt(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4], const uint32_t thread, const uint32_t threads) { for (int i = 0; i < Nrow; i++) { uint2 state1[3], state2[3]; LD4S(state1, rowIn, i, thread, threads); LD4S(state2, rowInOut, i, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); // simultaneously receive data from preceding thread and send data to following thread uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } ST4S(rowInOut, i, state2, thread, threads); LD4S(state1, rowOut, i, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state1[j] ^= state[j]; ST4S(rowOut, i, state1, thread, threads); } } static __device__ __forceinline__ void reduceDuplexRowt_8(const int rowInOut, uint2* state, const uint32_t thread, const uint32_t threads) { uint2 state1[3], state2[3], last[3]; LD4S(state1, 2, 0, thread, threads); LD4S(last, rowInOut, 0, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + last[j]; round_lyra(state); // simultaneously receive data from preceding thread and send data to following thread uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { last[0] ^= Data2; last[1] ^= Data0; last[2] ^= Data1; } else { last[0] ^= Data0; last[1] ^= Data1; last[2] ^= Data2; } if (rowInOut == 5) { #pragma unroll for (int j = 0; j < 3; j++) last[j] ^= state[j]; } for (int i = 1; i < Nrow; i++) { LD4S(state1, 2, i, thread, threads); LD4S(state2, rowInOut, i, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); } #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= last[j]; } __constant__ uint2x4 blake2b_IV[2] = { 0xf3bcc908lu, 0x6a09e667lu, 0x84caa73blu, 0xbb67ae85lu, 0xfe94f82blu, 0x3c6ef372lu, 0x5f1d36f1lu, 0xa54ff53alu, 0xade682d1lu, 0x510e527flu, 0x2b3e6c1flu, 0x9b05688clu, 0xfb41bd6blu, 0x1f83d9ablu, 0x137e2179lu, 0x5be0cd19lu }; __global__ __launch_bounds__(64, 1) void lyra2_gpu_hash_32_1(uint32_t threads, uint2 *g_hash) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint2x4 state[4]; state[0].x = state[1].x = __ldg(&g_hash[thread + threads * 0]); state[0].y = state[1].y = __ldg(&g_hash[thread + threads * 1]); state[0].z = state[1].z = __ldg(&g_hash[thread + threads * 2]); state[0].w = state[1].w = __ldg(&g_hash[thread + threads * 3]); state[2] = blake2b_IV[0]; state[3] = blake2b_IV[1]; for (int i = 0; i<24; i++) round_lyra(state); //because 12 is not enough ((uint2x4*)DMatrix)[threads * 0 + thread] = state[0]; ((uint2x4*)DMatrix)[threads * 1 + thread] = state[1]; ((uint2x4*)DMatrix)[threads * 2 + thread] = state[2]; ((uint2x4*)DMatrix)[threads * 3 + thread] = state[3]; } } __global__ __launch_bounds__(TPB52, 1) void lyra2_gpu_hash_32_2(const uint32_t threads, uint64_t *g_hash) { const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y; if (thread < threads) { uint2 state[4]; state[0] = __ldg(&DMatrix[(0 * threads + thread) * blockDim.x + threadIdx.x]); state[1] = __ldg(&DMatrix[(1 * threads + thread) * blockDim.x + threadIdx.x]); state[2] = __ldg(&DMatrix[(2 * threads + thread) * blockDim.x + threadIdx.x]); state[3] = __ldg(&DMatrix[(3 * threads + thread) * blockDim.x + threadIdx.x]); reduceDuplex(state, thread, threads); reduceDuplexRowSetup(1, 0, 2, state, thread, threads); reduceDuplexRowSetup(2, 1, 3, state, thread, threads); reduceDuplexRowSetup(3, 0, 4, state, thread, threads); reduceDuplexRowSetup(4, 3, 5, state, thread, threads); reduceDuplexRowSetup(5, 2, 6, state, thread, threads); reduceDuplexRowSetup(6, 1, 7, state, thread, threads); uint32_t rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(7, rowa, 0, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(0, rowa, 3, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(3, rowa, 6, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(6, rowa, 1, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(1, rowa, 4, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(4, rowa, 7, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(7, rowa, 2, state, thread, threads); rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt_8(rowa, state, thread, threads); DMatrix[(0 * threads + thread) * blockDim.x + threadIdx.x] = state[0]; DMatrix[(1 * threads + thread) * blockDim.x + threadIdx.x] = state[1]; DMatrix[(2 * threads + thread) * blockDim.x + threadIdx.x] = state[2]; DMatrix[(3 * threads + thread) * blockDim.x + threadIdx.x] = state[3]; } } __global__ __launch_bounds__(64, 1) void lyra2_gpu_hash_32_3(uint32_t threads, uint2 *g_hash) { const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; if (thread < threads) { uint2x4 state[4]; state[0] = __ldg4(&((uint2x4*)DMatrix)[threads * 0 + thread]); state[1] = __ldg4(&((uint2x4*)DMatrix)[threads * 1 + thread]); state[2] = __ldg4(&((uint2x4*)DMatrix)[threads * 2 + thread]); state[3] = __ldg4(&((uint2x4*)DMatrix)[threads * 3 + thread]); for (int i = 0; i < 12; i++) round_lyra(state); g_hash[thread + threads * 0] = state[0].x; g_hash[thread + threads * 1] = state[0].y; g_hash[thread + threads * 2] = state[0].z; g_hash[thread + threads * 3] = state[0].w; } } __global__ __launch_bounds__(64, 1) void lyra2_gpu_hash_64_1(uint32_t threads, uint2* const d_hash_512, const uint32_t round) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint2x4 state[4]; const size_t offset = (size_t)8 * thread + (round * 4U); uint2 *psrc = (uint2*)(&d_hash_512[offset]); state[0].x = state[1].x = __ldg(&psrc[0]); state[0].y = state[1].y = __ldg(&psrc[1]); state[0].z = state[1].z = __ldg(&psrc[2]); state[0].w = state[1].w = __ldg(&psrc[3]); state[2] = blake2b_IV[0]; state[3] = blake2b_IV[1]; for (int i = 0; i<24; i++) round_lyra(state); ((uint2x4*)DMatrix)[threads * 0 + thread] = state[0]; ((uint2x4*)DMatrix)[threads * 1 + thread] = state[1]; ((uint2x4*)DMatrix)[threads * 2 + thread] = state[2]; ((uint2x4*)DMatrix)[threads * 3 + thread] = state[3]; } } __global__ __launch_bounds__(64, 1) void lyra2_gpu_hash_64_3(uint32_t threads, uint2 *d_hash_512, const uint32_t round) { // This kernel outputs 2x 256-bits hashes in 512-bits chain offsets in 2 rounds const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; if (thread < threads) { uint2x4 state[4]; state[0] = __ldg4(&((uint2x4*)DMatrix)[threads * 0 + thread]); state[1] = __ldg4(&((uint2x4*)DMatrix)[threads * 1 + thread]); state[2] = __ldg4(&((uint2x4*)DMatrix)[threads * 2 + thread]); state[3] = __ldg4(&((uint2x4*)DMatrix)[threads * 3 + thread]); for (int i = 0; i < 12; i++) round_lyra(state); const size_t offset = (size_t)8 * thread + (round * 4U); uint2 *pdst = (uint2*)(&d_hash_512[offset]); pdst[0] = state[0].x; pdst[1] = state[0].y; pdst[2] = state[0].z; pdst[3] = state[0].w; } } #else #if __CUDA_ARCH__ < 500 /* for unsupported SM arch */ __device__ void* DMatrix; #endif __global__ void lyra2_gpu_hash_32_1(uint32_t threads, uint2 *g_hash) {} __global__ void lyra2_gpu_hash_32_2(uint32_t threads, uint64_t *g_hash) {} __global__ void lyra2_gpu_hash_32_3(uint32_t threads, uint2 *g_hash) {} __global__ void lyra2_gpu_hash_64_1(uint32_t threads, uint2* const d_hash_512, const uint32_t round) {} __global__ void lyra2_gpu_hash_64_3(uint32_t threads, uint2 *d_hash_512, const uint32_t round) {} #endif __host__ void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix) { // just assign the device pointer allocated in main loop cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice); } __host__ void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint64_t *d_hash, bool gtx750ti) { int dev_id = device_map[thr_id % MAX_GPUS]; uint32_t tpb = TPB52; if (cuda_arch[dev_id] >= 520) tpb = TPB52; else if (cuda_arch[dev_id] >= 500) tpb = TPB50; else if (cuda_arch[dev_id] >= 200) tpb = TPB20; dim3 grid1((threads * 4 + tpb - 1) / tpb); dim3 block1(4, tpb >> 2); dim3 grid2((threads + 64 - 1) / 64); dim3 block2(64); dim3 grid3((threads + tpb - 1) / tpb); dim3 block3(tpb); if (cuda_arch[dev_id] >= 520) { lyra2_gpu_hash_32_1 <<< grid2, block2 >>> (threads, (uint2*)d_hash); lyra2_gpu_hash_32_2 <<< grid1, block1, 24 * (8 - 0) * sizeof(uint2) * tpb >>> (threads, d_hash); lyra2_gpu_hash_32_3 <<< grid2, block2 >>> (threads, (uint2*)d_hash); } else if (cuda_arch[dev_id] >= 500) { size_t shared_mem = 0; if (gtx750ti) // suitable amount to adjust for 8warp shared_mem = 8192; else // suitable amount to adjust for 10warp shared_mem = 6144; lyra2_gpu_hash_32_1_sm5 <<< grid2, block2 >>> (threads, (uint2*)d_hash); lyra2_gpu_hash_32_2_sm5 <<< grid1, block1, shared_mem >>> (threads, (uint2*)d_hash); lyra2_gpu_hash_32_3_sm5 <<< grid2, block2 >>> (threads, (uint2*)d_hash); } else lyra2_gpu_hash_32_sm2 <<< grid3, block3 >>> (threads, d_hash); } __host__ void lyra2_cuda_hash_64(int thr_id, const uint32_t threads, uint64_t* d_hash_256, uint32_t* d_hash_512, bool gtx750ti) { int dev_id = device_map[thr_id % MAX_GPUS]; uint32_t tpb = TPB52; if (cuda_arch[dev_id] >= 520) tpb = TPB52; else if (cuda_arch[dev_id] >= 500) tpb = TPB50; else if (cuda_arch[dev_id] >= 200) tpb = TPB20; dim3 grid1((size_t(threads) * 4 + tpb - 1) / tpb); dim3 block1(4, tpb >> 2); dim3 grid2((threads + 64 - 1) / 64); dim3 block2(64); if (cuda_arch[dev_id] >= 520) { const size_t shared_mem = sizeof(uint2) * tpb * 192; // 49152; lyra2_gpu_hash_64_1 <<< grid2, block2 >>> (threads, (uint2*)d_hash_512, 0); lyra2_gpu_hash_32_2 <<< grid1, block1, shared_mem >>> (threads, d_hash_256); lyra2_gpu_hash_64_3 <<< grid2, block2 >>> (threads, (uint2*)d_hash_512, 0); lyra2_gpu_hash_64_1 <<< grid2, block2 >>> (threads, (uint2*)d_hash_512, 1); lyra2_gpu_hash_32_2 <<< grid1, block1, shared_mem >>> (threads, d_hash_256); lyra2_gpu_hash_64_3 <<< grid2, block2 >>> (threads, (uint2*)d_hash_512, 1); } else if (cuda_arch[dev_id] >= 500) { size_t shared_mem = gtx750ti ? 8192 : 6144; // 8 or 10 warps lyra2_gpu_hash_64_1_sm5 <<< grid2, block2 >>> (threads, (uint2*)d_hash_512, 0); lyra2_gpu_hash_32_2_sm5 <<< grid1, block1, shared_mem >>> (threads, (uint2*)d_hash_256); lyra2_gpu_hash_64_3_sm5 <<< grid2, block2 >>> (threads, (uint2*)d_hash_512, 0); lyra2_gpu_hash_64_1_sm5 <<< grid2, block2 >>> (threads, (uint2*)d_hash_512, 1); lyra2_gpu_hash_32_2_sm5 <<< grid1, block1, shared_mem >>> (threads, (uint2*)d_hash_256); lyra2_gpu_hash_64_3_sm5 <<< grid2, block2 >>> (threads, (uint2*)d_hash_512, 1); } else { // alternative method for SM 3.x hash64_to_lyra32(thr_id, threads, d_hash_512, d_hash_256, 0); lyra2_cpu_hash_32(thr_id, threads, d_hash_256, gtx750ti); hash64_from_lyra32(thr_id, threads, d_hash_512, d_hash_256, 0); hash64_to_lyra32(thr_id, threads, d_hash_512, d_hash_256, 1); lyra2_cpu_hash_32(thr_id, threads, d_hash_256, gtx750ti); hash64_from_lyra32(thr_id, threads, d_hash_512, d_hash_256, 1); } }