/** * Lyra2 (v1) cuda implementation based on djm34 work * tpruvot@github 2015, Nanashi 08/2016 (from 1.8-r2) * Lyra2Z implentation for Zcoin based on all the previous * djm34 2017 **/ #include #include #define TPB52 32 #define TPB30 160 #define TPB20 160 #include "cuda_lyra2Z_sm5.cuh" #ifdef __INTELLISENSE__ /* just for vstudio code colors */ __device__ uint32_t __shfl(uint32_t a, uint32_t b, uint32_t c); #define atomicMin() #define __CUDA_ARCH__ 520 #endif static uint32_t *h_GNonces[16]; // this need to get fixed as the rest of that routine static uint32_t *d_GNonces[16]; #define reduceDuplexRow(rowIn, rowInOut, rowOut) { \ for (int i = 0; i < 8; i++) { \ for (int j = 0; j < 12; j++) \ state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \ round_lyra_sm2(state); \ for (int j = 0; j < 12; j++) \ Matrix[j + 12 * i][rowOut] ^= state[j]; \ Matrix[0 + 12 * i][rowInOut] ^= state[11]; \ Matrix[1 + 12 * i][rowInOut] ^= state[0]; \ Matrix[2 + 12 * i][rowInOut] ^= state[1]; \ Matrix[3 + 12 * i][rowInOut] ^= state[2]; \ Matrix[4 + 12 * i][rowInOut] ^= state[3]; \ Matrix[5 + 12 * i][rowInOut] ^= state[4]; \ Matrix[6 + 12 * i][rowInOut] ^= state[5]; \ Matrix[7 + 12 * i][rowInOut] ^= state[6]; \ Matrix[8 + 12 * i][rowInOut] ^= state[7]; \ Matrix[9 + 12 * i][rowInOut] ^= state[8]; \ Matrix[10+ 12 * i][rowInOut] ^= state[9]; \ Matrix[11+ 12 * i][rowInOut] ^= state[10]; \ } \ } #define absorbblock(in) { \ state[0] ^= Matrix[0][in]; \ state[1] ^= Matrix[1][in]; \ state[2] ^= Matrix[2][in]; \ state[3] ^= Matrix[3][in]; \ state[4] ^= Matrix[4][in]; \ state[5] ^= Matrix[5][in]; \ state[6] ^= Matrix[6][in]; \ state[7] ^= Matrix[7][in]; \ state[8] ^= Matrix[8][in]; \ state[9] ^= Matrix[9][in]; \ state[10] ^= Matrix[10][in]; \ state[11] ^= Matrix[11][in]; \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ round_lyra_sm2(state); \ } __device__ __forceinline__ static void round_lyra_sm2(uint2 *s) { Gfunc(s[0], s[4], s[8], s[12]); Gfunc(s[1], s[5], s[9], s[13]); Gfunc(s[2], s[6], s[10], s[14]); Gfunc(s[3], s[7], s[11], s[15]); Gfunc(s[0], s[5], s[10], s[15]); Gfunc(s[1], s[6], s[11], s[12]); Gfunc(s[2], s[7], s[8], s[13]); Gfunc(s[3], s[4], s[9], s[14]); } __device__ __forceinline__ void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[16], uint2 Matrix[96][8]) { #if __CUDA_ARCH__ > 500 #pragma unroll #endif for (int i = 0; i < 8; i++) { #pragma unroll for (int j = 0; j < 12; j++) state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; round_lyra_sm2(state); #pragma unroll for (int j = 0; j < 12; j++) Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j]; Matrix[0 + 12 * i][rowInOut] ^= state[11]; Matrix[1 + 12 * i][rowInOut] ^= state[0]; Matrix[2 + 12 * i][rowInOut] ^= state[1]; Matrix[3 + 12 * i][rowInOut] ^= state[2]; Matrix[4 + 12 * i][rowInOut] ^= state[3]; Matrix[5 + 12 * i][rowInOut] ^= state[4]; Matrix[6 + 12 * i][rowInOut] ^= state[5]; Matrix[7 + 12 * i][rowInOut] ^= state[6]; Matrix[8 + 12 * i][rowInOut] ^= state[7]; Matrix[9 + 12 * i][rowInOut] ^= state[8]; Matrix[10 + 12 * i][rowInOut] ^= state[9]; Matrix[11 + 12 * i][rowInOut] ^= state[10]; } } #if __CUDA_ARCH__ < 350 __constant__ static uint2 blake2b_IV_sm2[8] = { { 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a }, { 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 } }; __global__ __launch_bounds__(TPB30, 1) void lyra2Z_gpu_hash_32_sm2(uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resNonces) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); const uint2 Mask[8] = { { 0x00000020, 0x00000000 },{ 0x00000020, 0x00000000 }, { 0x00000020, 0x00000000 },{ 0x00000008, 0x00000000 }, { 0x00000008, 0x00000000 },{ 0x00000008, 0x00000000 }, { 0x00000080, 0x00000000 },{ 0x00000000, 0x01000000 } }; if (thread < threads) { uint2 state[16]; #pragma unroll for (int i = 0; i<4; i++) { LOHI(state[i].x, state[i].y, g_hash[threads*i + thread]); } //password #pragma unroll for (int i = 0; i<4; i++) { state[i + 4] = state[i]; } //salt #pragma unroll for (int i = 0; i<8; i++) { state[i + 8] = blake2b_IV_sm2[i]; } // blake2blyra x2 //#pragma unroll 24 for (int i = 0; i<12; i++) { round_lyra_sm2(state); } for (int i = 0; i<8; i++) state[i] ^= Mask[i]; for (int i = 0; i<12; i++) { round_lyra_sm2(state); } uint2 Matrix[96][8]; // not cool // reducedSqueezeRow0 #pragma unroll 8 for (int i = 0; i < 8; i++) { #pragma unroll 12 for (int j = 0; j<12; j++) { Matrix[j + 84 - 12 * i][0] = state[j]; } round_lyra_sm2(state); } // reducedSqueezeRow1 #pragma unroll 8 for (int i = 0; i < 8; i++) { #pragma unroll 12 for (int j = 0; j<12; j++) { state[j] ^= Matrix[j + 12 * i][0]; } round_lyra_sm2(state); #pragma unroll 12 for (int j = 0; j<12; j++) { Matrix[j + 84 - 12 * i][1] = Matrix[j + 12 * i][0] ^ state[j]; } } reduceDuplexRowSetup(1, 0, 2, state, Matrix); reduceDuplexRowSetup(2, 1, 3, state, Matrix); reduceDuplexRowSetup(3, 0, 4, state, Matrix); reduceDuplexRowSetup(4, 3, 5, state, Matrix); reduceDuplexRowSetup(5, 2, 6, state, Matrix); reduceDuplexRowSetup(6, 1, 7, state, Matrix); uint32_t rowa; uint32_t prev = 7; uint32_t iterator = 0; for (uint32_t i = 0; i<8; i++) { rowa = state[0].x & 7; reduceDuplexRow(prev, rowa, iterator); prev = iterator; iterator = (iterator + 3) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = state[0].x & 7; reduceDuplexRow(prev, rowa, iterator); prev = iterator; iterator = (iterator - 1) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = state[0].x & 7; reduceDuplexRow(prev, rowa, iterator); prev = iterator; iterator = (iterator + 3) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = state[0].x & 7; reduceDuplexRow(prev, rowa, iterator); prev = iterator; iterator = (iterator - 1) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = state[0].x & 7; reduceDuplexRow(prev, rowa, iterator); prev = iterator; iterator = (iterator + 3) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = state[0].x & 7; reduceDuplexRow(prev, rowa, iterator); prev = iterator; iterator = (iterator - 1) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = state[0].x & 7; reduceDuplexRow(prev, rowa, iterator); prev = iterator; iterator = (iterator + 3) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = state[0].x & 7; reduceDuplexRow(prev, rowa, iterator); prev = iterator; iterator = (iterator - 1) & 7; } absorbblock(rowa); uint32_t nonce = startNounce + thread; if (((uint64_t*)state)[3] <= ((uint64_t*)pTarget)[3]) { atomicMin(&resNonces[1], resNonces[0]); atomicMin(&resNonces[0], nonce); } } //thread } #else __global__ void lyra2Z_gpu_hash_32_sm2(uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resNonces) {} #endif #if __CUDA_ARCH__ > 500 #include "cuda_lyra2_vectors.h" //#include "cuda_vector_uint2x4.h" #define Nrow 8 #define Ncol 8 #define memshift 3 #define BUF_COUNT 0 __device__ uint2 *DMatrix; __device__ __forceinline__ void LD4S(uint2 res[3], const int row, const int col, const int thread, const int threads) { #if BUF_COUNT != 8 extern __shared__ uint2 shared_mem[]; const int s0 = (Ncol * (row - BUF_COUNT) + col) * memshift; #endif #if BUF_COUNT != 0 const int d0 = (memshift *(Ncol * row + col) * threads + thread)*blockDim.x + threadIdx.x; #endif #if BUF_COUNT == 8 #pragma unroll for (int j = 0; j < 3; j++) res[j] = *(DMatrix + d0 + j * threads * blockDim.x); #elif BUF_COUNT == 0 #pragma unroll for (int j = 0; j < 3; j++) res[j] = shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; #else if (row < BUF_COUNT) { #pragma unroll for (int j = 0; j < 3; j++) res[j] = *(DMatrix + d0 + j * threads * blockDim.x); } else { #pragma unroll for (int j = 0; j < 3; j++) res[j] = shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; } #endif } __device__ __forceinline__ void ST4S(const int row, const int col, const uint2 data[3], const int thread, const int threads) { #if BUF_COUNT != 8 extern __shared__ uint2 shared_mem[]; const int s0 = (Ncol * (row - BUF_COUNT) + col) * memshift; #endif #if BUF_COUNT != 0 const int d0 = (memshift *(Ncol * row + col) * threads + thread)*blockDim.x + threadIdx.x; #endif #if BUF_COUNT == 8 #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + d0 + j * threads * blockDim.x) = data[j]; #elif BUF_COUNT == 0 #pragma unroll for (int j = 0; j < 3; j++) shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data[j]; #else if (row < BUF_COUNT) { #pragma unroll for (int j = 0; j < 3; j++) *(DMatrix + d0 + j * threads * blockDim.x) = data[j]; } else { #pragma unroll for (int j = 0; j < 3; j++) shared_mem[((s0 + j) * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data[j]; } #endif } #if __CUDA_ARCH__ >= 300 __device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) { return __shfl(a, b, c); } __device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) { return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c)); } __device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) { a1 = WarpShuffle(a1, b1, c); a2 = WarpShuffle(a2, b2, c); a3 = WarpShuffle(a3, b3, c); } #else __device__ __forceinline__ uint32_t WarpShuffle(uint32_t a, uint32_t b, uint32_t c) { extern __shared__ uint2 shared_mem[]; const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; uint32_t *_ptr = (uint32_t*)shared_mem; __threadfence_block(); uint32_t buf = _ptr[thread]; _ptr[thread] = a; __threadfence_block(); uint32_t result = _ptr[(thread&~(c - 1)) + (b&(c - 1))]; __threadfence_block(); _ptr[thread] = buf; __threadfence_block(); return result; } __device__ __forceinline__ uint2 WarpShuffle(uint2 a, uint32_t b, uint32_t c) { extern __shared__ uint2 shared_mem[]; const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; __threadfence_block(); uint2 buf = shared_mem[thread]; shared_mem[thread] = a; __threadfence_block(); uint2 result = shared_mem[(thread&~(c - 1)) + (b&(c - 1))]; __threadfence_block(); shared_mem[thread] = buf; __threadfence_block(); return result; } __device__ __forceinline__ void WarpShuffle3(uint2 &a1, uint2 &a2, uint2 &a3, uint32_t b1, uint32_t b2, uint32_t b3, uint32_t c) { extern __shared__ uint2 shared_mem[]; const uint32_t thread = blockDim.x * threadIdx.y + threadIdx.x; __threadfence_block(); uint2 buf = shared_mem[thread]; shared_mem[thread] = a1; __threadfence_block(); a1 = shared_mem[(thread&~(c - 1)) + (b1&(c - 1))]; __threadfence_block(); shared_mem[thread] = a2; __threadfence_block(); a2 = shared_mem[(thread&~(c - 1)) + (b2&(c - 1))]; __threadfence_block(); shared_mem[thread] = a3; __threadfence_block(); a3 = shared_mem[(thread&~(c - 1)) + (b3&(c - 1))]; __threadfence_block(); shared_mem[thread] = buf; __threadfence_block(); } #endif __device__ __forceinline__ void round_lyra(uint2 s[4]) { Gfunc(s[0], s[1], s[2], s[3]); WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 1, threadIdx.x + 2, threadIdx.x + 3, 4); Gfunc(s[0], s[1], s[2], s[3]); WarpShuffle3(s[1], s[2], s[3], threadIdx.x + 3, threadIdx.x + 2, threadIdx.x + 1, 4); } static __device__ __forceinline__ void round_lyra(uint2x4* s) { Gfunc(s[0].x, s[1].x, s[2].x, s[3].x); Gfunc(s[0].y, s[1].y, s[2].y, s[3].y); Gfunc(s[0].z, s[1].z, s[2].z, s[3].z); Gfunc(s[0].w, s[1].w, s[2].w, s[3].w); Gfunc(s[0].x, s[1].y, s[2].z, s[3].w); Gfunc(s[0].y, s[1].z, s[2].w, s[3].x); Gfunc(s[0].z, s[1].w, s[2].x, s[3].y); Gfunc(s[0].w, s[1].x, s[2].y, s[3].z); } static __device__ __forceinline__ void reduceDuplex(uint2 state[4], uint32_t thread, const uint32_t threads) { uint2 state1[3]; #if __CUDA_ARCH__ > 500 #pragma unroll #endif for (int i = 0; i < Nrow; i++) { ST4S(0, Ncol - i - 1, state, thread, threads); round_lyra(state); } #pragma unroll 4 for (int i = 0; i < Nrow; i++) { LD4S(state1, 0, i, thread, threads); for (int j = 0; j < 3; j++) state[j] ^= state1[j]; round_lyra(state); for (int j = 0; j < 3; j++) state1[j] ^= state[j]; ST4S(1, Ncol - i - 1, state1, thread, threads); } } static __device__ __forceinline__ void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4], uint32_t thread, const uint32_t threads) { uint2 state1[3], state2[3]; #pragma unroll 1 for (int i = 0; i < Nrow; i++) { LD4S(state1, rowIn, i, thread, threads); LD4S(state2, rowInOut, i, thread, threads); for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); #pragma unroll for (int j = 0; j < 3; j++) state1[j] ^= state[j]; ST4S(rowOut, Ncol - i - 1, state1, thread, threads); //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } ST4S(rowInOut, i, state2, thread, threads); } } static __device__ __forceinline__ void reduceDuplexRowt(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4], const uint32_t thread, const uint32_t threads) { for (int i = 0; i < Nrow; i++) { uint2 state1[3], state2[3]; LD4S(state1, rowIn, i, thread, threads); LD4S(state2, rowInOut, i, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { state2[0] ^= Data2; state2[1] ^= Data0; state2[2] ^= Data1; } else { state2[0] ^= Data0; state2[1] ^= Data1; state2[2] ^= Data2; } ST4S(rowInOut, i, state2, thread, threads); LD4S(state1, rowOut, i, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state1[j] ^= state[j]; ST4S(rowOut, i, state1, thread, threads); } } #if 0 static __device__ __forceinline__ void reduceDuplexRowt_8(const int rowInOut, uint2* state, const uint32_t thread, const uint32_t threads) { uint2 state1[3], state2[3], last[3]; LD4S(state1, 2, 0, thread, threads); LD4S(last, rowInOut, 0, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + last[j]; round_lyra(state); //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { last[0] ^= Data2; last[1] ^= Data0; last[2] ^= Data1; } else { last[0] ^= Data0; last[1] ^= Data1; last[2] ^= Data2; } if (rowInOut == 5) { #pragma unroll for (int j = 0; j < 3; j++) last[j] ^= state[j]; } for (int i = 1; i < Nrow; i++) { LD4S(state1, 2, i, thread, threads); LD4S(state2, rowInOut, i, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); } #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= last[j]; } #endif static __device__ __forceinline__ void reduceDuplexRowt_8_v2(const int rowIn, const int rowOut, const int rowInOut, uint2* state, const uint32_t thread, const uint32_t threads) { uint2 state1[3], state2[3], last[3]; LD4S(state1, rowIn, 0, thread, threads); LD4S(last, rowInOut, 0, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + last[j]; round_lyra(state); //一個手前のスレッドからデータを貰う(同時に一個先のスレッドにデータを送る) uint2 Data0 = state[0]; uint2 Data1 = state[1]; uint2 Data2 = state[2]; WarpShuffle3(Data0, Data1, Data2, threadIdx.x - 1, threadIdx.x - 1, threadIdx.x - 1, 4); if (threadIdx.x == 0) { last[0] ^= Data2; last[1] ^= Data0; last[2] ^= Data1; } else { last[0] ^= Data0; last[1] ^= Data1; last[2] ^= Data2; } if (rowInOut == rowOut) { #pragma unroll for (int j = 0; j < 3; j++) last[j] ^= state[j]; } for (int i = 1; i < Nrow; i++) { LD4S(state1, rowIn, i, thread, threads); LD4S(state2, rowInOut, i, thread, threads); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= state1[j] + state2[j]; round_lyra(state); } #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= last[j]; } __global__ __launch_bounds__(64, 1) void lyra2Z_gpu_hash_32_1(uint32_t threads, uint32_t startNounce, uint2 *g_hash) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); const uint2x4 Mask[2] = { 0x00000020UL, 0x00000000UL, 0x00000020UL, 0x00000000UL, 0x00000020UL, 0x00000000UL, 0x00000008UL, 0x00000000UL, 0x00000008UL, 0x00000000UL, 0x00000008UL, 0x00000000UL, 0x00000080UL, 0x00000000UL, 0x00000000UL, 0x01000000UL }; const uint2x4 blake2b_IV[2] = { 0xf3bcc908lu, 0x6a09e667lu, 0x84caa73blu, 0xbb67ae85lu, 0xfe94f82blu, 0x3c6ef372lu, 0x5f1d36f1lu, 0xa54ff53alu, 0xade682d1lu, 0x510e527flu, 0x2b3e6c1flu, 0x9b05688clu, 0xfb41bd6blu, 0x1f83d9ablu, 0x137e2179lu, 0x5be0cd19lu }; if (thread < threads) { uint2x4 state[4]; state[0].x = state[1].x = __ldg(&g_hash[thread + threads * 0]); state[0].y = state[1].y = __ldg(&g_hash[thread + threads * 1]); state[0].z = state[1].z = __ldg(&g_hash[thread + threads * 2]); state[0].w = state[1].w = __ldg(&g_hash[thread + threads * 3]); state[2] = blake2b_IV[0]; state[3] = blake2b_IV[1]; for (int i = 0; i<12; i++) round_lyra(state); state[0] ^= Mask[0]; state[1] ^= Mask[1]; for (int i = 0; i<12; i++) round_lyra(state); //because 12 is not enough ((uint2x4*)DMatrix)[threads * 0 + thread] = state[0]; ((uint2x4*)DMatrix)[threads * 1 + thread] = state[1]; ((uint2x4*)DMatrix)[threads * 2 + thread] = state[2]; ((uint2x4*)DMatrix)[threads * 3 + thread] = state[3]; } } __global__ __launch_bounds__(TPB52, 1) void lyra2Z_gpu_hash_32_2(uint32_t threads, uint32_t startNounce, uint64_t *g_hash) { const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y; if (thread < threads) { uint2 state[4]; state[0] = __ldg(&DMatrix[(0 * threads + thread) * blockDim.x + threadIdx.x]); state[1] = __ldg(&DMatrix[(1 * threads + thread) * blockDim.x + threadIdx.x]); state[2] = __ldg(&DMatrix[(2 * threads + thread) * blockDim.x + threadIdx.x]); state[3] = __ldg(&DMatrix[(3 * threads + thread) * blockDim.x + threadIdx.x]); reduceDuplex(state, thread, threads); reduceDuplexRowSetup(1, 0, 2, state, thread, threads); reduceDuplexRowSetup(2, 1, 3, state, thread, threads); reduceDuplexRowSetup(3, 0, 4, state, thread, threads); reduceDuplexRowSetup(4, 3, 5, state, thread, threads); reduceDuplexRowSetup(5, 2, 6, state, thread, threads); reduceDuplexRowSetup(6, 1, 7, state, thread, threads); uint32_t rowa; // = WarpShuffle(state[0].x, 0, 4) & 7; uint32_t prev = 7; uint32_t iterator = 0; //for (uint32_t j=0;j<4;j++) { for (uint32_t i = 0; i<8; i++) { rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(prev, rowa, iterator, state, thread, threads); prev = iterator; iterator = (iterator + 3) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(prev, rowa, iterator, state, thread, threads); prev = iterator; iterator = (iterator - 1) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(prev, rowa, iterator, state, thread, threads); prev = iterator; iterator = (iterator + 3) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(prev, rowa, iterator, state, thread, threads); prev = iterator; iterator = (iterator - 1) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(prev, rowa, iterator, state, thread, threads); prev = iterator; iterator = (iterator + 3) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(prev, rowa, iterator, state, thread, threads); prev = iterator; iterator = (iterator - 1) & 7; } for (uint32_t i = 0; i<8; i++) { rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(prev, rowa, iterator, state, thread, threads); prev = iterator; iterator = (iterator + 3) & 7; } for (uint32_t i = 0; i<7; i++) { rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt(prev, rowa, iterator, state, thread, threads); prev = iterator; iterator = (iterator - 1) & 7; } //} rowa = WarpShuffle(state[0].x, 0, 4) & 7; reduceDuplexRowt_8_v2(prev,iterator,rowa, state, thread, threads); DMatrix[(0 * threads + thread) * blockDim.x + threadIdx.x] = state[0]; DMatrix[(1 * threads + thread) * blockDim.x + threadIdx.x] = state[1]; DMatrix[(2 * threads + thread) * blockDim.x + threadIdx.x] = state[2]; DMatrix[(3 * threads + thread) * blockDim.x + threadIdx.x] = state[3]; } } __global__ __launch_bounds__(64, 1) void lyra2Z_gpu_hash_32_3(uint32_t threads, uint32_t startNounce, uint2 *g_hash, uint32_t *resNonces) { const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; uint28 state[4]; if (thread < threads) { state[0] = __ldg4(&((uint2x4*)DMatrix)[threads * 0 + thread]); state[1] = __ldg4(&((uint2x4*)DMatrix)[threads * 1 + thread]); state[2] = __ldg4(&((uint2x4*)DMatrix)[threads * 2 + thread]); state[3] = __ldg4(&((uint2x4*)DMatrix)[threads * 3 + thread]); for (int i = 0; i < 12; i++) round_lyra(state); uint32_t nonce = startNounce + thread; if (((uint64_t*)state)[3] <= ((uint64_t*)pTarget)[3]) { atomicMin(&resNonces[1], resNonces[0]); atomicMin(&resNonces[0], nonce); } /* g_hash[thread + threads * 0] = state[0].x; g_hash[thread + threads * 1] = state[0].y; g_hash[thread + threads * 2] = state[0].z; g_hash[thread + threads * 3] = state[0].w; */ } } #else #if __CUDA_ARCH__ < 350 __device__ void* DMatrix; #endif __global__ void lyra2Z_gpu_hash_32_1(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {} __global__ void lyra2Z_gpu_hash_32_2(uint32_t threads, uint32_t startNounce, uint64_t *g_hash) {} __global__ void lyra2Z_gpu_hash_32_3(uint32_t threads, uint32_t startNounce, uint2 *g_hash, uint32_t *resNonces) {} #endif __host__ void lyra2Z_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix) { // just assign the device pointer allocated in main loop cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice); cudaMalloc(&d_GNonces[thr_id], 2 * sizeof(uint32_t)); cudaMallocHost(&h_GNonces[thr_id], 2 * sizeof(uint32_t)); } __host__ void lyra2Z_cpu_init_sm2(int thr_id, uint32_t threads) { // just assign the device pointer allocated in main loop cudaMalloc(&d_GNonces[thr_id], 2 * sizeof(uint32_t)); cudaMallocHost(&h_GNonces[thr_id], 2 * sizeof(uint32_t)); } __host__ void lyra2Z_cpu_free(int thr_id) { cudaFree(d_GNonces[thr_id]); cudaFreeHost(h_GNonces[thr_id]); } __host__ uint32_t lyra2Z_getSecNonce(int thr_id, int num) { uint32_t results[2]; memset(results, 0xFF, sizeof(results)); cudaMemcpy(results, d_GNonces[thr_id], sizeof(results), cudaMemcpyDeviceToHost); if (results[1] == results[0]) return UINT32_MAX; return results[num]; } __host__ void lyra2Z_setTarget(const void *pTargetIn) { cudaMemcpyToSymbol(pTarget, pTargetIn, 32, 0, cudaMemcpyHostToDevice); } __host__ uint32_t lyra2Z_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, bool gtx750ti) { uint32_t result = UINT32_MAX; cudaMemset(d_GNonces[thr_id], 0xff, 2 * sizeof(uint32_t)); int dev_id = device_map[thr_id % MAX_GPUS]; uint32_t tpb = TPB52; if (device_sm[dev_id] == 500) tpb = TPB50; if (device_sm[dev_id] == 200) tpb = TPB20; dim3 grid1((threads * 4 + tpb - 1) / tpb); dim3 block1(4, tpb >> 2); dim3 grid2((threads + 64 - 1) / 64); dim3 block2(64); dim3 grid3((threads + tpb - 1) / tpb); dim3 block3(tpb); if (device_sm[dev_id] >= 520) { lyra2Z_gpu_hash_32_1 <<< grid2, block2 >>> (threads, startNounce, (uint2*)d_hash); lyra2Z_gpu_hash_32_2 <<< grid1, block1, 24 * (8 - 0) * sizeof(uint2) * tpb >>> (threads, startNounce, d_hash); lyra2Z_gpu_hash_32_3 <<< grid2, block2 >>> (threads, startNounce, (uint2*)d_hash, d_GNonces[thr_id]); } else if (device_sm[dev_id] == 500 || device_sm[dev_id] == 350) { size_t shared_mem = 0; if (gtx750ti) shared_mem = 8192; else shared_mem = 6144; lyra2Z_gpu_hash_32_1_sm5 <<< grid2, block2 >>> (threads, startNounce, (uint2*)d_hash); lyra2Z_gpu_hash_32_2_sm5 <<< grid1, block1, shared_mem >>> (threads, startNounce, (uint2*)d_hash); lyra2Z_gpu_hash_32_3_sm5 <<< grid2, block2 >>> (threads, startNounce, (uint2*)d_hash, d_GNonces[thr_id]); } else lyra2Z_gpu_hash_32_sm2 <<< grid3, block3 >>> (threads, startNounce, d_hash, d_GNonces[thr_id]); // get first found nonce cudaMemcpy(h_GNonces[thr_id], d_GNonces[thr_id], 1 * sizeof(uint32_t), cudaMemcpyDeviceToHost); result = *h_GNonces[thr_id]; return result; }