/**
 * JHA v8 algorithm - compatible implementation
 * @author tpruvot@github 05-2017
 */

extern "C" {
#include "sph/sph_keccak.h"
#include "sph/sph_blake.h"
#include "sph/sph_groestl.h"
#include "sph/sph_jh.h"
#include "sph/sph_skein.h"
}

#include "miner.h"
#include "cuda_helper.h"
#include "quark/cuda_quark.h"

static uint32_t *d_hash[MAX_GPUS] = { 0 };
static uint32_t *d_hash_br2[MAX_GPUS];
static uint32_t *d_tempBranch[MAX_GPUS];

extern void jackpot_keccak512_cpu_init(int thr_id, uint32_t threads);
extern void jackpot_keccak512_cpu_setBlock(void *pdata, size_t inlen);
extern void jackpot_keccak512_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int order);

// CPU HASH
extern "C" void jha_hash(void *output, const void *input)
{
	uint32_t hash[16];

	sph_blake512_context     ctx_blake;
	sph_groestl512_context   ctx_groestl;
	sph_jh512_context        ctx_jh;
	sph_keccak512_context    ctx_keccak;
	sph_skein512_context     ctx_skein;

	sph_keccak512_init(&ctx_keccak);
	sph_keccak512 (&ctx_keccak, input, 80);
	sph_keccak512_close(&ctx_keccak, hash);

	for (int rnd = 0; rnd < 3; rnd++)
	{
		if (hash[0] & 0x01) {
			sph_groestl512_init(&ctx_groestl);
			sph_groestl512 (&ctx_groestl, (&hash), 64);
			sph_groestl512_close(&ctx_groestl, (&hash));
		}
		else {
			sph_skein512_init(&ctx_skein);
			sph_skein512 (&ctx_skein, (&hash), 64);
			sph_skein512_close(&ctx_skein, (&hash));
		}

		if (hash[0] & 0x01) {
			sph_blake512_init(&ctx_blake);
			sph_blake512 (&ctx_blake, (&hash), 64);
			sph_blake512_close(&ctx_blake, (&hash));
		}
		else {
			sph_jh512_init(&ctx_jh);
			sph_jh512 (&ctx_jh, (&hash), 64);
			sph_jh512_close(&ctx_jh, (&hash));
		}
	}
	memcpy(output, hash, 32);
}

__global__ __launch_bounds__(128, 8)
void jha_filter_gpu(const uint32_t threads, const uint32_t* d_hash, uint32_t* d_branch2, uint32_t* d_NonceBranch)
{
	const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
	if (thread < threads)
	{
		const uint32_t offset = thread * 16U; // 64U / sizeof(uint32_t);
		uint4 *psrc = (uint4*) (&d_hash[offset]);
		d_NonceBranch[thread] = ((uint8_t*)psrc)[0] & 0x01;
		if (d_NonceBranch[thread]) return;
		// uint4 = 4x uint32_t = 16 bytes
		uint4 *pdst = (uint4*) (&d_branch2[offset]);
		pdst[0] = psrc[0];
		pdst[1] = psrc[1];
		pdst[2] = psrc[2];
		pdst[3] = psrc[3];
	}
}

__global__ __launch_bounds__(128, 8)
void jha_merge_gpu(const uint32_t threads, uint32_t* d_hash, uint32_t* d_branch2, uint32_t* const d_NonceBranch)
{
	const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
	if (thread < threads && !d_NonceBranch[thread])
	{
		const uint32_t offset = thread * 16U;
		uint4 *pdst = (uint4*) (&d_hash[offset]);
		uint4 *psrc = (uint4*) (&d_branch2[offset]);
		pdst[0] = psrc[0];
		pdst[1] = psrc[1];
		pdst[2] = psrc[2];
		pdst[3] = psrc[3];
	}
}

__host__
uint32_t jha_filter_cpu(const int thr_id, const uint32_t threads, const uint32_t *inpHashes, uint32_t* d_branch2)
{
	const uint32_t threadsperblock = 128;
	dim3 grid((threads + threadsperblock - 1) / threadsperblock);
	dim3 block(threadsperblock);
	// extract algo permution hashes to a second branch buffer
	jha_filter_gpu <<<grid, block>>> (threads, inpHashes, d_branch2, d_tempBranch[thr_id]);
	return threads;
}

__host__
void jha_merge_cpu(const int thr_id, const uint32_t threads, uint32_t *outpHashes, uint32_t* d_branch2)
{
	const uint32_t threadsperblock = 128;
	dim3 grid((threads + threadsperblock - 1) / threadsperblock);
	dim3 block(threadsperblock);
	// put back second branch hashes to the common buffer d_hash
	jha_merge_gpu <<<grid, block>>> (threads, outpHashes, d_branch2, d_tempBranch[thr_id]);
}

static bool init[MAX_GPUS] = { 0 };

extern "C" int scanhash_jha(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done)
{
	uint32_t _ALIGN(64) endiandata[22];
	uint32_t *pdata = work->data;
	uint32_t *ptarget = work->target;
	const uint32_t first_nonce = pdata[19];
	int dev_id = device_map[thr_id];

	uint32_t throughput =  cuda_default_throughput(thr_id, 1U << 20);
	if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);

	if (opt_benchmark)
		ptarget[7] = 0x000f;

	if (!init[thr_id])
	{
		cudaSetDevice(dev_id);
		if (opt_cudaschedule == -1 && gpu_threads == 1) {
			cudaDeviceReset();
			// reduce cpu usage
			cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
			CUDA_LOG_ERROR();
		}
		cuda_get_arch(thr_id);
		gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);

		CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput));
		CUDA_SAFE_CALL(cudaMalloc(&d_hash_br2[thr_id], (size_t) 64 * throughput));
		CUDA_SAFE_CALL(cudaMalloc(&d_tempBranch[thr_id], sizeof(uint32_t) * throughput));

		jackpot_keccak512_cpu_init(thr_id, throughput);
		quark_blake512_cpu_init(thr_id, throughput);
		quark_groestl512_cpu_init(thr_id, throughput);
		quark_jh512_cpu_init(thr_id, throughput);
		quark_skein512_cpu_init(thr_id, throughput);

		cuda_check_cpu_init(thr_id, throughput);

		init[thr_id] = true;
	}

	for (int k=0; k < 22; k++)
		be32enc(&endiandata[k], pdata[k]);

	jackpot_keccak512_cpu_setBlock((void*)endiandata, 80);
	cuda_check_cpu_setTarget(ptarget);

	do {
		int order = 0;

		jackpot_keccak512_cpu_hash(thr_id, throughput, pdata[19], d_hash[thr_id], order++);

		for (int rnd = 0; rnd < 3; rnd++)
		{
			jha_filter_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
			quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
			quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
			jha_merge_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);

			jha_filter_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
			quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++);
			quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++);
			jha_merge_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]);
		}

		*hashes_done = pdata[19] - first_nonce + throughput;

		CUDA_LOG_ERROR();

		work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);

		if (work->nonces[0] != UINT32_MAX)
		{
			const uint32_t Htarg = ptarget[7];
			uint32_t _ALIGN(64) vhash[8];

			be32enc(&endiandata[19], work->nonces[0]);
			jha_hash(vhash, endiandata);

			if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
				work->valid_nonces = 1;
				work_set_target_ratio(work, vhash);
				work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1);
				if (work->nonces[1] != 0) {
					be32enc(&endiandata[19], work->nonces[1]);
					jha_hash(vhash, endiandata);
					bn_set_target_ratio(work, vhash, 1);
					work->valid_nonces++;
					pdata[19] = max(work->nonces[0], work->nonces[1]) + 1;
				} else {
					pdata[19] = work->nonces[0] + 1; // cursor
				}
				return work->valid_nonces;
			}
			else if (vhash[7] > Htarg) {
				gpu_increment_reject(thr_id);
				if (!opt_quiet)
					gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]);
				pdata[19] = work->nonces[0] + 1;
				continue;
			}
		}

		if ((uint64_t) throughput + pdata[19] >= max_nonce) {
			pdata[19] = max_nonce;
			break;
		}

		pdata[19] += throughput;

	} while (!work_restart[thr_id].restart);

	*hashes_done = pdata[19] - first_nonce;

	CUDA_LOG_ERROR();

	return 0;
}

// cleanup
extern "C" void free_jha(int thr_id)
{
	if (!init[thr_id])
		return;

	cudaThreadSynchronize();

	cudaFree(d_hash[thr_id]);
	cudaFree(d_hash_br2[thr_id]);
	cudaFree(d_tempBranch[thr_id]);

	quark_blake512_cpu_free(thr_id);
	quark_groestl512_cpu_free(thr_id);

	cuda_check_cpu_free(thr_id);
	CUDA_LOG_ERROR();

	cudaDeviceSynchronize();
	init[thr_id] = false;
}