/** * JHA v8 algorithm - compatible implementation * @author tpruvot@github 05-2017 */ extern "C" { #include "sph/sph_keccak.h" #include "sph/sph_blake.h" #include "sph/sph_groestl.h" #include "sph/sph_jh.h" #include "sph/sph_skein.h" } #include "miner.h" #include "cuda_helper.h" #include "quark/cuda_quark.h" static uint32_t *d_hash[MAX_GPUS] = { 0 }; static uint32_t *d_hash_br2[MAX_GPUS]; static uint32_t *d_tempBranch[MAX_GPUS]; extern void jackpot_keccak512_cpu_init(int thr_id, uint32_t threads); extern void jackpot_keccak512_cpu_setBlock(void *pdata, size_t inlen); extern void jackpot_keccak512_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int order); // CPU HASH extern "C" void jha_hash(void *output, const void *input) { uint32_t hash[16]; sph_blake512_context ctx_blake; sph_groestl512_context ctx_groestl; sph_jh512_context ctx_jh; sph_keccak512_context ctx_keccak; sph_skein512_context ctx_skein; sph_keccak512_init(&ctx_keccak); sph_keccak512 (&ctx_keccak, input, 80); sph_keccak512_close(&ctx_keccak, hash); for (int rnd = 0; rnd < 3; rnd++) { if (hash[0] & 0x01) { sph_groestl512_init(&ctx_groestl); sph_groestl512 (&ctx_groestl, (&hash), 64); sph_groestl512_close(&ctx_groestl, (&hash)); } else { sph_skein512_init(&ctx_skein); sph_skein512 (&ctx_skein, (&hash), 64); sph_skein512_close(&ctx_skein, (&hash)); } if (hash[0] & 0x01) { sph_blake512_init(&ctx_blake); sph_blake512 (&ctx_blake, (&hash), 64); sph_blake512_close(&ctx_blake, (&hash)); } else { sph_jh512_init(&ctx_jh); sph_jh512 (&ctx_jh, (&hash), 64); sph_jh512_close(&ctx_jh, (&hash)); } } memcpy(output, hash, 32); } __global__ __launch_bounds__(128, 8) void jha_filter_gpu(const uint32_t threads, const uint32_t* d_hash, uint32_t* d_branch2, uint32_t* d_NonceBranch) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint32_t offset = thread * 16U; // 64U / sizeof(uint32_t); uint4 *psrc = (uint4*) (&d_hash[offset]); d_NonceBranch[thread] = ((uint8_t*)psrc)[0] & 0x01; if (d_NonceBranch[thread]) return; // uint4 = 4x uint32_t = 16 bytes uint4 *pdst = (uint4*) (&d_branch2[offset]); pdst[0] = psrc[0]; pdst[1] = psrc[1]; pdst[2] = psrc[2]; pdst[3] = psrc[3]; } } __global__ __launch_bounds__(128, 8) void jha_merge_gpu(const uint32_t threads, uint32_t* d_hash, uint32_t* d_branch2, uint32_t* const d_NonceBranch) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads && !d_NonceBranch[thread]) { const uint32_t offset = thread * 16U; uint4 *pdst = (uint4*) (&d_hash[offset]); uint4 *psrc = (uint4*) (&d_branch2[offset]); pdst[0] = psrc[0]; pdst[1] = psrc[1]; pdst[2] = psrc[2]; pdst[3] = psrc[3]; } } __host__ uint32_t jha_filter_cpu(const int thr_id, const uint32_t threads, const uint32_t *inpHashes, uint32_t* d_branch2) { const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); // extract algo permution hashes to a second branch buffer jha_filter_gpu <<<grid, block>>> (threads, inpHashes, d_branch2, d_tempBranch[thr_id]); return threads; } __host__ void jha_merge_cpu(const int thr_id, const uint32_t threads, uint32_t *outpHashes, uint32_t* d_branch2) { const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); // put back second branch hashes to the common buffer d_hash jha_merge_gpu <<<grid, block>>> (threads, outpHashes, d_branch2, d_tempBranch[thr_id]); } static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_jha(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) endiandata[22]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int dev_id = device_map[thr_id]; uint32_t throughput = cuda_default_throughput(thr_id, 1U << 20); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ptarget[7] = 0x000f; if (!init[thr_id]) { cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } cuda_get_arch(thr_id); gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput)); CUDA_SAFE_CALL(cudaMalloc(&d_hash_br2[thr_id], (size_t) 64 * throughput)); CUDA_SAFE_CALL(cudaMalloc(&d_tempBranch[thr_id], sizeof(uint32_t) * throughput)); jackpot_keccak512_cpu_init(thr_id, throughput); quark_blake512_cpu_init(thr_id, throughput); quark_groestl512_cpu_init(thr_id, throughput); quark_jh512_cpu_init(thr_id, throughput); quark_skein512_cpu_init(thr_id, throughput); cuda_check_cpu_init(thr_id, throughput); init[thr_id] = true; } for (int k=0; k < 22; k++) be32enc(&endiandata[k], pdata[k]); jackpot_keccak512_cpu_setBlock((void*)endiandata, 80); cuda_check_cpu_setTarget(ptarget); do { int order = 0; jackpot_keccak512_cpu_hash(thr_id, throughput, pdata[19], d_hash[thr_id], order++); for (int rnd = 0; rnd < 3; rnd++) { jha_filter_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]); quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++); jha_merge_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]); jha_filter_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]); quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash_br2[thr_id], order++); jha_merge_cpu(thr_id, throughput, d_hash[thr_id], d_hash_br2[thr_id]); } *hashes_done = pdata[19] - first_nonce + throughput; CUDA_LOG_ERROR(); work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]); if (work->nonces[0] != UINT32_MAX) { const uint32_t Htarg = ptarget[7]; uint32_t _ALIGN(64) vhash[8]; be32enc(&endiandata[19], work->nonces[0]); jha_hash(vhash, endiandata); if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhash); work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1); if (work->nonces[1] != 0) { be32enc(&endiandata[19], work->nonces[1]); jha_hash(vhash, endiandata); bn_set_target_ratio(work, vhash, 1); work->valid_nonces++; pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; } else { pdata[19] = work->nonces[0] + 1; // cursor } return work->valid_nonces; } else if (vhash[7] > Htarg) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); pdata[19] = work->nonces[0] + 1; continue; } } if ((uint64_t) throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; CUDA_LOG_ERROR(); return 0; } // cleanup extern "C" void free_jha(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); cudaFree(d_hash_br2[thr_id]); cudaFree(d_tempBranch[thr_id]); quark_blake512_cpu_free(thr_id); quark_groestl512_cpu_free(thr_id); cuda_check_cpu_free(thr_id); CUDA_LOG_ERROR(); cudaDeviceSynchronize(); init[thr_id] = false; }