/** * X11EVO algo implementation * Cuda implementation by tpruvot@github - May 2016 */ #include <stdio.h> #include <memory.h> extern "C" { #include "sph/sph_blake.h" #include "sph/sph_bmw.h" #include "sph/sph_groestl.h" #include "sph/sph_skein.h" #include "sph/sph_jh.h" #include "sph/sph_keccak.h" #include "sph/sph_luffa.h" #include "sph/sph_cubehash.h" #include "sph/sph_shavite.h" #include "sph/sph_simd.h" #include "sph/sph_echo.h" } #include "miner.h" #include "cuda_helper.h" #include "cuda_x11.h" static uint32_t *d_hash[MAX_GPUS]; enum Algo { BLAKE = 0, BMW, GROESTL, SKEIN, JH, KECCAK, LUFFA, CUBEHASH, SHAVITE, SIMD, ECHO, HASH_FUNC_COUNT }; static void swap8(uint8_t *a, uint8_t *b) { uint8_t t = *a; *a = *b; *b = t; } static void initPerm(uint8_t n[], int count) { for (int i = 0; i < count; i++) n[i] = i; } static int nextPerm(uint8_t n[], int count) { int tail, i, j; if (count <= 1) return 0; for (i = count - 1; i>0 && n[i - 1] >= n[i]; i--); tail = i; if (tail > 0) { for (j = count - 1; j>tail && n[j] <= n[tail - 1]; j--); swap8(&n[tail - 1], &n[j]); } for (i = tail, j = count - 1; i<j; i++, j--) swap8(&n[i], &n[j]); return (tail != 0); } static void getAlgoString(char *str, int seq) { uint8_t algoList[HASH_FUNC_COUNT]; char *sptr; initPerm(algoList, HASH_FUNC_COUNT); for (int k = 0; k < seq; k++) { nextPerm(algoList, HASH_FUNC_COUNT); } sptr = str; for (int j = 0; j < HASH_FUNC_COUNT; j++) { if (algoList[j] >= 10) sprintf(sptr, "%c", 'A' + (algoList[j] - 10)); else sprintf(sptr, "%u", (uint32_t) algoList[j]); sptr++; } *sptr = '\0'; //applog(LOG_DEBUG, "nextPerm %s", str); } static __thread uint32_t s_ntime = 0; static char hashOrder[HASH_FUNC_COUNT + 1] = { 0 }; static int s_sequence = -1; #define INITIAL_DATE 0x57254700 static inline int getCurrentAlgoSeq(uint32_t current_time) { // change once per day return (int) (current_time - INITIAL_DATE) / (60 * 60 * 24); } static void evo_twisted_code(uint32_t ntime, char *permstr) { int seq = getCurrentAlgoSeq(ntime); if (s_sequence != seq) { getAlgoString(permstr, seq); s_sequence = seq; } } // X11evo CPU Hash extern "C" void x11evo_hash(void *output, const void *input) { uint32_t _ALIGN(64) hash[64/4] = { 0 }; sph_blake512_context ctx_blake; sph_bmw512_context ctx_bmw; sph_groestl512_context ctx_groestl; sph_skein512_context ctx_skein; sph_jh512_context ctx_jh; sph_keccak512_context ctx_keccak; sph_luffa512_context ctx_luffa1; sph_cubehash512_context ctx_cubehash1; sph_shavite512_context ctx_shavite1; sph_simd512_context ctx_simd1; sph_echo512_context ctx_echo1; if (s_sequence == -1) { uint32_t *data = (uint32_t*) input; const uint32_t ntime = data[17]; evo_twisted_code(ntime, hashOrder); } void *in = (void*) input; int size = 80; const int hashes = (int) strlen(hashOrder); for (int i = 0; i < hashes; i++) { const char elem = hashOrder[i]; uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0'; if (i > 0) { in = (void*) hash; size = 64; } switch (algo) { case BLAKE: sph_blake512_init(&ctx_blake); sph_blake512(&ctx_blake, in, size); sph_blake512_close(&ctx_blake, hash); break; case BMW: sph_bmw512_init(&ctx_bmw); sph_bmw512(&ctx_bmw, in, size); sph_bmw512_close(&ctx_bmw, hash); break; case GROESTL: sph_groestl512_init(&ctx_groestl); sph_groestl512(&ctx_groestl, in, size); sph_groestl512_close(&ctx_groestl, hash); break; case SKEIN: sph_skein512_init(&ctx_skein); sph_skein512(&ctx_skein, in, size); sph_skein512_close(&ctx_skein, hash); break; case JH: sph_jh512_init(&ctx_jh); sph_jh512(&ctx_jh, in, size); sph_jh512_close(&ctx_jh, hash); break; case KECCAK: sph_keccak512_init(&ctx_keccak); sph_keccak512(&ctx_keccak, in, size); sph_keccak512_close(&ctx_keccak, hash); break; case LUFFA: sph_luffa512_init(&ctx_luffa1); sph_luffa512(&ctx_luffa1, in, size); sph_luffa512_close(&ctx_luffa1, hash); break; case CUBEHASH: sph_cubehash512_init(&ctx_cubehash1); sph_cubehash512(&ctx_cubehash1, in, size); sph_cubehash512_close(&ctx_cubehash1, hash); break; case SHAVITE: sph_shavite512_init(&ctx_shavite1); sph_shavite512(&ctx_shavite1, in, size); sph_shavite512_close(&ctx_shavite1, hash); break; case SIMD: sph_simd512_init(&ctx_simd1); sph_simd512(&ctx_simd1, in, size); sph_simd512_close(&ctx_simd1, hash); break; case ECHO: sph_echo512_init(&ctx_echo1); sph_echo512(&ctx_echo1, in, size); sph_echo512_close(&ctx_echo1, hash); break; } } memcpy(output, hash, 32); } //#define _DEBUG #define _DEBUG_PREFIX "evo" #include "cuda_debug.cuh" static bool init[MAX_GPUS] = { 0 }; extern void quark_blake512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order); extern "C" int scanhash_x11evo(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int intensity = (device_sm[device_map[thr_id]] >= 500 && !is_windows()) ? 20 : 19; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); // 19=256*256*8; if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_debug || s_ntime != pdata[17] || s_sequence == -1) { uint32_t ntime = swab32(work->data[17]); evo_twisted_code(ntime, hashOrder); s_ntime = pdata[17]; if (opt_debug) { int secs = (int) (ntime - INITIAL_DATE) % (60 * 60 * 24); secs = (60 * 60 * 24) - secs; applog(LOG_DEBUG, "evo hash order %s, next in %d mn", hashOrder, secs/60); } } if (opt_benchmark) ptarget[7] = 0x5; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } quark_blake512_cpu_init(thr_id, throughput); quark_bmw512_cpu_init(thr_id, throughput); quark_groestl512_cpu_init(thr_id, throughput); quark_skein512_cpu_init(thr_id, throughput); quark_keccak512_cpu_init(thr_id, throughput); quark_jh512_cpu_init(thr_id, throughput); x11_luffa512_cpu_init(thr_id, throughput); x11_cubehash512_cpu_init(thr_id, throughput); x11_shavite512_cpu_init(thr_id, throughput); x11_echo512_cpu_init(thr_id, throughput); if (x11_simd512_cpu_init(thr_id, throughput) != 0) { return 0; } CUDA_CALL_OR_RET_X(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput), 0); cuda_check_cpu_init(thr_id, throughput); init[thr_id] = true; } uint32_t endiandata[20]; for (int k=0; k < 19; k++) be32enc(&endiandata[k], pdata[k]); cuda_check_cpu_setTarget(ptarget); quark_blake512_cpu_setBlock_80(thr_id, endiandata); const int hashes = (int) strlen(hashOrder); do { int order = 1; uint32_t foundNonce; // Hash with CUDA quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id]); TRACE("blake80:"); for (int i = 1; i < hashes; i++) { const char elem = hashOrder[i]; const uint8_t algo64 = elem >= 'A' ? elem - 'A' + 10 : elem - '0'; switch (algo64) { case BLAKE: quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("blake :"); break; case BMW: quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("bmw :"); break; case GROESTL: quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("groestl:"); break; case SKEIN: quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("skein :"); break; case JH: quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("jh512 :"); break; case KECCAK: quark_keccak512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("keccak :"); break; case LUFFA: x11_luffa512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("luffa :"); break; case CUBEHASH: x11_cubehash512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("cube :"); break; case SHAVITE: x11_shavite512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("shavite:"); break; case SIMD: x11_simd512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("simd :"); break; case ECHO: x11_echo512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); TRACE("echo => "); break; } } foundNonce = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]); if (foundNonce != UINT32_MAX) { uint32_t _ALIGN(64) vhash64[8]; const uint32_t Htarg = ptarget[7]; be32enc(&endiandata[19], foundNonce); x11evo_hash(vhash64, endiandata); if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) { int res = 1; // check if there was some other ones... uint32_t secNonce = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1); work_set_target_ratio(work, vhash64); *hashes_done = pdata[19] - first_nonce + throughput; if (secNonce != 0) { be32enc(&endiandata[19], secNonce); x11evo_hash(vhash64, endiandata); if (bn_hash_target_ratio(vhash64, ptarget) > work->shareratio) work_set_target_ratio(work, vhash64); pdata[21] = secNonce; res++; } pdata[19] = foundNonce; return res; } else { gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce); pdata[19] = foundNonce + 1; continue; } } if ((uint64_t) throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; return 0; } // cleanup extern "C" void free_x11evo(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); quark_blake512_cpu_free(thr_id); quark_groestl512_cpu_free(thr_id); x11_simd512_cpu_free(thr_id); cuda_check_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }