/** * Blake-256 Cuda Kernel (Tested on SM 5.0) * * Tanguy Pruvot - Nov. 2014 */ extern "C" { #include "sph/sph_blake.h" } #include "cuda_helper.h" #include static __device__ uint64_t cuda_swab32ll(uint64_t x) { return MAKE_ULONGLONG(cuda_swab32(_LODWORD(x)), cuda_swab32(_HIDWORD(x))); } __constant__ static uint32_t c_data[3+1]; __constant__ static uint32_t sigma[16][16]; static uint32_t c_sigma[16][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } }; static const uint32_t c_IV256[8] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; __device__ __constant__ static uint32_t cpu_h[8]; __device__ __constant__ static uint32_t u256[16]; static const uint32_t c_u256[16] = { 0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, 0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 }; #define GS2(a,b,c,d,x) { \ const uint32_t idx1 = sigma[r][x]; \ const uint32_t idx2 = sigma[r][x+1]; \ v[a] += (m[idx1] ^ u256[idx2]) + v[b]; \ v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \ \ v[a] += (m[idx2] ^ u256[idx1]) + v[b]; \ v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \ } //#define ROTL32(x, n) ((x) << (n)) | ((x) >> (32 - (n))) //#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) #define hostGS(a,b,c,d,x) { \ const uint32_t idx1 = c_sigma[r][x]; \ const uint32_t idx2 = c_sigma[r][x+1]; \ v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \ v[d] = ROTR32(v[d] ^ v[a], 16); \ v[c] += v[d]; \ v[b] = ROTR32(v[b] ^ v[c], 12); \ \ v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \ v[d] = ROTR32(v[d] ^ v[a], 8); \ v[c] += v[d]; \ v[b] = ROTR32(v[b] ^ v[c], 7); \ } /* Second part (64-80) msg never change, store it */ __device__ __constant__ static const uint32_t c_Padding[16] = { 0, 0, 0, 0, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 640, }; __host__ __forceinline__ static void blake256_compress1st(uint32_t *h, const uint32_t *block, const uint32_t T0) { uint32_t m[16]; uint32_t v[16]; for (int i = 0; i < 16; i++) { m[i] = block[i]; } for (int i = 0; i < 8; i++) v[i] = h[i]; v[8] = c_u256[0]; v[9] = c_u256[1]; v[10] = c_u256[2]; v[11] = c_u256[3]; v[12] = c_u256[4] ^ T0; v[13] = c_u256[5] ^ T0; v[14] = c_u256[6]; v[15] = c_u256[7]; for (int r = 0; r < 14; r++) { /* column step */ hostGS(0, 4, 0x8, 0xC, 0x0); hostGS(1, 5, 0x9, 0xD, 0x2); hostGS(2, 6, 0xA, 0xE, 0x4); hostGS(3, 7, 0xB, 0xF, 0x6); /* diagonal step */ hostGS(0, 5, 0xA, 0xF, 0x8); hostGS(1, 6, 0xB, 0xC, 0xA); hostGS(2, 7, 0x8, 0xD, 0xC); hostGS(3, 4, 0x9, 0xE, 0xE); } for (int i = 0; i < 16; i++) { int j = i & 7; h[j] ^= v[i]; } } __device__ __forceinline__ static void blake256_compress2nd(uint32_t *h, const uint32_t *block, const uint32_t T0) { uint32_t m[16]; uint32_t v[16]; m[0] = block[0]; m[1] = block[1]; m[2] = block[2]; m[3] = block[3]; #pragma unroll for (int i = 4; i < 16; i++) { m[i] = c_Padding[i]; } #pragma unroll 8 for (int i = 0; i < 8; i++) v[i] = h[i]; v[8] = u256[0]; v[9] = u256[1]; v[10] = u256[2]; v[11] = u256[3]; v[12] = u256[4] ^ T0; v[13] = u256[5] ^ T0; v[14] = u256[6]; v[15] = u256[7]; #pragma unroll 14 for (int r = 0; r < 14; r++) { /* column step */ GS2(0, 4, 0x8, 0xC, 0x0); GS2(1, 5, 0x9, 0xD, 0x2); GS2(2, 6, 0xA, 0xE, 0x4); GS2(3, 7, 0xB, 0xF, 0x6); /* diagonal step */ GS2(0, 5, 0xA, 0xF, 0x8); GS2(1, 6, 0xB, 0xC, 0xA); GS2(2, 7, 0x8, 0xD, 0xC); GS2(3, 4, 0x9, 0xE, 0xE); } #pragma unroll 16 for (int i = 0; i < 16; i++) { int j = i & 7; h[j] ^= v[i]; } } __global__ __launch_bounds__(256,3) void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint64_t * Hash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t h[8]; uint32_t input[4]; #pragma unroll for (int i = 0; i < 8; i++) h[i] = cpu_h[i]; #pragma unroll for (int i = 0; i < 3; ++i) input[i] = c_data[i]; input[3] = startNonce + thread; blake256_compress2nd(h, input, 640); #pragma unroll for (int i = 0; i<4; i++) { Hash[i*threads + thread] = cuda_swab32ll(MAKE_ULONGLONG(h[2 * i], h[2*i+1])); } } } __host__ void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order) { const uint32_t threadsperblock = 256; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); blake256_gpu_hash_80 <<>> (threads, startNonce, Hash); MyStreamSynchronize(NULL, order, thr_id); } __host__ void blake256_cpu_setBlock_80(uint32_t *pdata) { uint32_t h[8], data[20]; memcpy(data, pdata, 80); memcpy(h, c_IV256, sizeof(c_IV256)); blake256_compress1st(h, pdata, 512); cudaMemcpyToSymbol(cpu_h, h, sizeof(h), 0, cudaMemcpyHostToDevice); cudaMemcpyToSymbol(c_data, &data[16], sizeof(c_data), 0, cudaMemcpyHostToDevice); } __host__ void blake256_cpu_init(int thr_id, uint32_t threads) { cuda_get_arch(thr_id); cudaMemcpyToSymbol(u256, c_u256, sizeof(c_u256), 0, cudaMemcpyHostToDevice); cudaMemcpyToSymbol(sigma, c_sigma, sizeof(c_sigma), 0, cudaMemcpyHostToDevice); }