#include #include #include #include "cuda_helper.h" static __constant__ uint64_t c_PaddedMessage80[20]; // padded message (80 bytes + 72 bytes midstate + align) // Take a look at: https://www.schneier.com/skein1.3.pdf #define SHL(x, n) ((x) << (n)) #define SHR(x, n) ((x) >> (n)) #if __CUDA_ARCH__ > 300 __device__ uint64_t skein_rotl64(const uint64_t x, const int offset) { uint64_t res; asm("{\n\t" ".reg .u32 tl,th,vl,vh;\n\t" ".reg .pred p;\n\t" "mov.b64 {tl,th}, %1;\n\t" "shf.l.wrap.b32 vl, tl, th, %2;\n\t" "shf.l.wrap.b32 vh, th, tl, %2;\n\t" "setp.lt.u32 p, %2, 32;\n\t" "@!p mov.b64 %0, {vl,vh};\n\t" "@p mov.b64 %0, {vh,vl};\n\t" "}" : "=l"(res) : "l"(x) , "r"(offset) ); return res; } #undef ROTL64 #define ROTL64 skein_rotl64 #endif /* * M9_ ## s ## _ ## i evaluates to s+i mod 9 (0 <= s <= 18, 0 <= i <= 7). */ #define M9_0_0 0 #define M9_0_1 1 #define M9_0_2 2 #define M9_0_3 3 #define M9_0_4 4 #define M9_0_5 5 #define M9_0_6 6 #define M9_0_7 7 #define M9_1_0 1 #define M9_1_1 2 #define M9_1_2 3 #define M9_1_3 4 #define M9_1_4 5 #define M9_1_5 6 #define M9_1_6 7 #define M9_1_7 8 #define M9_2_0 2 #define M9_2_1 3 #define M9_2_2 4 #define M9_2_3 5 #define M9_2_4 6 #define M9_2_5 7 #define M9_2_6 8 #define M9_2_7 0 #define M9_3_0 3 #define M9_3_1 4 #define M9_3_2 5 #define M9_3_3 6 #define M9_3_4 7 #define M9_3_5 8 #define M9_3_6 0 #define M9_3_7 1 #define M9_4_0 4 #define M9_4_1 5 #define M9_4_2 6 #define M9_4_3 7 #define M9_4_4 8 #define M9_4_5 0 #define M9_4_6 1 #define M9_4_7 2 #define M9_5_0 5 #define M9_5_1 6 #define M9_5_2 7 #define M9_5_3 8 #define M9_5_4 0 #define M9_5_5 1 #define M9_5_6 2 #define M9_5_7 3 #define M9_6_0 6 #define M9_6_1 7 #define M9_6_2 8 #define M9_6_3 0 #define M9_6_4 1 #define M9_6_5 2 #define M9_6_6 3 #define M9_6_7 4 #define M9_7_0 7 #define M9_7_1 8 #define M9_7_2 0 #define M9_7_3 1 #define M9_7_4 2 #define M9_7_5 3 #define M9_7_6 4 #define M9_7_7 5 #define M9_8_0 8 #define M9_8_1 0 #define M9_8_2 1 #define M9_8_3 2 #define M9_8_4 3 #define M9_8_5 4 #define M9_8_6 5 #define M9_8_7 6 #define M9_9_0 0 #define M9_9_1 1 #define M9_9_2 2 #define M9_9_3 3 #define M9_9_4 4 #define M9_9_5 5 #define M9_9_6 6 #define M9_9_7 7 #define M9_10_0 1 #define M9_10_1 2 #define M9_10_2 3 #define M9_10_3 4 #define M9_10_4 5 #define M9_10_5 6 #define M9_10_6 7 #define M9_10_7 8 #define M9_11_0 2 #define M9_11_1 3 #define M9_11_2 4 #define M9_11_3 5 #define M9_11_4 6 #define M9_11_5 7 #define M9_11_6 8 #define M9_11_7 0 #define M9_12_0 3 #define M9_12_1 4 #define M9_12_2 5 #define M9_12_3 6 #define M9_12_4 7 #define M9_12_5 8 #define M9_12_6 0 #define M9_12_7 1 #define M9_13_0 4 #define M9_13_1 5 #define M9_13_2 6 #define M9_13_3 7 #define M9_13_4 8 #define M9_13_5 0 #define M9_13_6 1 #define M9_13_7 2 #define M9_14_0 5 #define M9_14_1 6 #define M9_14_2 7 #define M9_14_3 8 #define M9_14_4 0 #define M9_14_5 1 #define M9_14_6 2 #define M9_14_7 3 #define M9_15_0 6 #define M9_15_1 7 #define M9_15_2 8 #define M9_15_3 0 #define M9_15_4 1 #define M9_15_5 2 #define M9_15_6 3 #define M9_15_7 4 #define M9_16_0 7 #define M9_16_1 8 #define M9_16_2 0 #define M9_16_3 1 #define M9_16_4 2 #define M9_16_5 3 #define M9_16_6 4 #define M9_16_7 5 #define M9_17_0 8 #define M9_17_1 0 #define M9_17_2 1 #define M9_17_3 2 #define M9_17_4 3 #define M9_17_5 4 #define M9_17_6 5 #define M9_17_7 6 #define M9_18_0 0 #define M9_18_1 1 #define M9_18_2 2 #define M9_18_3 3 #define M9_18_4 4 #define M9_18_5 5 #define M9_18_6 6 #define M9_18_7 7 /* * M3_ ## s ## _ ## i evaluates to s+i mod 3 (0 <= s <= 18, 0 <= i <= 1). */ #define M3_0_0 0 #define M3_0_1 1 #define M3_1_0 1 #define M3_1_1 2 #define M3_2_0 2 #define M3_2_1 0 #define M3_3_0 0 #define M3_3_1 1 #define M3_4_0 1 #define M3_4_1 2 #define M3_5_0 2 #define M3_5_1 0 #define M3_6_0 0 #define M3_6_1 1 #define M3_7_0 1 #define M3_7_1 2 #define M3_8_0 2 #define M3_8_1 0 #define M3_9_0 0 #define M3_9_1 1 #define M3_10_0 1 #define M3_10_1 2 #define M3_11_0 2 #define M3_11_1 0 #define M3_12_0 0 #define M3_12_1 1 #define M3_13_0 1 #define M3_13_1 2 #define M3_14_0 2 #define M3_14_1 0 #define M3_15_0 0 #define M3_15_1 1 #define M3_16_0 1 #define M3_16_1 2 #define M3_17_0 2 #define M3_17_1 0 #define M3_18_0 0 #define M3_18_1 1 #define XCAT(x, y) XCAT_(x, y) #define XCAT_(x, y) x ## y #define SKBI(k, s, i) XCAT(k, XCAT(XCAT(XCAT(M9_, s), _), i)) #define SKBT(t, s, v) XCAT(t, XCAT(XCAT(XCAT(M3_, s), _), v)) #define TFBIG_KINIT(k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2) { \ k8 = ((k0 ^ k1) ^ (k2 ^ k3)) ^ ((k4 ^ k5) ^ (k6 ^ k7)) \ ^ SPH_C64(0x1BD11BDAA9FC1A22); \ t2 = t0 ^ t1; \ } #define TFBIG_ADDKEY(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \ w0 = (w0 + SKBI(k, s, 0)); \ w1 = (w1 + SKBI(k, s, 1)); \ w2 = (w2 + SKBI(k, s, 2)); \ w3 = (w3 + SKBI(k, s, 3)); \ w4 = (w4 + SKBI(k, s, 4)); \ w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \ w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \ w7 = (w7 + SKBI(k, s, 7) + (uint64_t)s); \ } #define TFBIG_MIX(x0, x1, rc) { \ x0 = x0 + x1; \ x1 = ROTL64(x1, rc) ^ x0; \ } #define TFBIG_MIX8(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \ TFBIG_MIX(w0, w1, rc0); \ TFBIG_MIX(w2, w3, rc1); \ TFBIG_MIX(w4, w5, rc2); \ TFBIG_MIX(w6, w7, rc3); \ } #define TFBIG_4e(s) { \ TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ TFBIG_MIX8(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \ TFBIG_MIX8(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \ TFBIG_MIX8(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \ TFBIG_MIX8(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \ } #define TFBIG_4o(s) { \ TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ TFBIG_MIX8(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \ TFBIG_MIX8(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \ TFBIG_MIX8(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \ TFBIG_MIX8(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \ } /* uint64_t midstate for skein 80 */ #define TFBIG_ADDKEY_PRE(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \ w0 = (w0 + SKBI(k, s, 0)); \ w1 = (w1 + SKBI(k, s, 1)); \ w2 = (w2 + SKBI(k, s, 2)); \ w3 = (w3 + SKBI(k, s, 3)); \ w4 = (w4 + SKBI(k, s, 4)); \ w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \ w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \ w7 = (w7 + SKBI(k, s, 7) + (s)); \ } #define TFBIG_MIX_PRE(x0, x1, rc) { \ x0 = x0 + x1; \ x1 = ROTL64(x1, rc) ^ x0; \ } #define TFBIG_MIX8_PRE(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \ TFBIG_MIX_PRE(w0, w1, rc0); \ TFBIG_MIX_PRE(w2, w3, rc1); \ TFBIG_MIX_PRE(w4, w5, rc2); \ TFBIG_MIX_PRE(w6, w7, rc3); \ } #define TFBIG_4e_PRE(s) { \ TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ TFBIG_MIX8_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \ TFBIG_MIX8_PRE(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \ TFBIG_MIX8_PRE(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \ TFBIG_MIX8_PRE(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \ } #define TFBIG_4o_PRE(s) { \ TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ TFBIG_MIX8_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \ TFBIG_MIX8_PRE(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \ TFBIG_MIX8_PRE(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \ TFBIG_MIX8_PRE(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \ } /* uint2 variant for SM3.2+ */ #define TFBIG_KINIT_UI2(k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2) { \ k8 = ((k0 ^ k1) ^ (k2 ^ k3)) ^ ((k4 ^ k5) ^ (k6 ^ k7)) \ ^ vectorize(SPH_C64(0x1BD11BDAA9FC1A22)); \ t2 = t0 ^ t1; \ } #define TFBIG_ADDKEY_UI2(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \ w0 = (w0 + SKBI(k, s, 0)); \ w1 = (w1 + SKBI(k, s, 1)); \ w2 = (w2 + SKBI(k, s, 2)); \ w3 = (w3 + SKBI(k, s, 3)); \ w4 = (w4 + SKBI(k, s, 4)); \ w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \ w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \ w7 = (w7 + SKBI(k, s, 7) + vectorize(s)); \ } #define TFBIG_MIX_UI2(x0, x1, rc) { \ x0 = x0 + x1; \ x1 = ROL2(x1, rc) ^ x0; \ } #define TFBIG_MIX8_UI2(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \ TFBIG_MIX_UI2(w0, w1, rc0); \ TFBIG_MIX_UI2(w2, w3, rc1); \ TFBIG_MIX_UI2(w4, w5, rc2); \ TFBIG_MIX_UI2(w6, w7, rc3); \ } #define TFBIG_4e_UI2(s) { \ TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ TFBIG_MIX8_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \ TFBIG_MIX8_UI2(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \ TFBIG_MIX8_UI2(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \ TFBIG_MIX8_UI2(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \ } #define TFBIG_4o_UI2(s) { \ TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ TFBIG_MIX8_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \ TFBIG_MIX8_UI2(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \ TFBIG_MIX8_UI2(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \ TFBIG_MIX8_UI2(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \ } __global__ void quark_skein512_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint64_t * const __restrict__ g_hash, uint32_t *g_nonceVector) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { // Skein uint2 h0, h1, h2, h3, h4, h5, h6, h7, h8; uint2 t0, t1, t2; uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); uint32_t hashPosition = nounce - startNounce; uint64_t *inpHash = &g_hash[hashPosition * 8U]; // Initialisierung h0 = vectorize(0x4903ADFF749C51CEull); h1 = vectorize(0x0D95DE399746DF03ull); h2 = vectorize(0x8FD1934127C79BCEull); h3 = vectorize(0x9A255629FF352CB1ull); h4 = vectorize(0x5DB62599DF6CA7B0ull); h5 = vectorize(0xEABE394CA9D5C3F4ull); h6 = vectorize(0x991112C71A75B523ull); h7 = vectorize(0xAE18A40B660FCC33ull); uint2 p[8]; // 1. Runde -> etype = 480, ptr = 64, bcount = 0, data = msg #pragma unroll 8 for (int i = 0; i < 8; i++) p[i] = vectorize(inpHash[i]); t0 = vectorize(64); // ptr t1 = vectorize(480ull << 55); // etype TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); TFBIG_4e_UI2(0); TFBIG_4o_UI2(1); TFBIG_4e_UI2(2); TFBIG_4o_UI2(3); TFBIG_4e_UI2(4); TFBIG_4o_UI2(5); TFBIG_4e_UI2(6); TFBIG_4o_UI2(7); TFBIG_4e_UI2(8); TFBIG_4o_UI2(9); TFBIG_4e_UI2(10); TFBIG_4o_UI2(11); TFBIG_4e_UI2(12); TFBIG_4o_UI2(13); TFBIG_4e_UI2(14); TFBIG_4o_UI2(15); TFBIG_4e_UI2(16); TFBIG_4o_UI2(17); TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); h0 = vectorize(inpHash[0]) ^ p[0]; h1 = vectorize(inpHash[1]) ^ p[1]; h2 = vectorize(inpHash[2]) ^ p[2]; h3 = vectorize(inpHash[3]) ^ p[3]; h4 = vectorize(inpHash[4]) ^ p[4]; h5 = vectorize(inpHash[5]) ^ p[5]; h6 = vectorize(inpHash[6]) ^ p[6]; h7 = vectorize(inpHash[7]) ^ p[7]; // 2. Runde -> etype = 510, ptr = 8, bcount = 0, data = 0 #pragma unroll 8 for(int i=0; i<8; i++) p[i] = vectorize(0ull); t0 = vectorize(8); // ptr t1 = vectorize(510ull << 55); // etype TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); TFBIG_4e_UI2(0); TFBIG_4o_UI2(1); TFBIG_4e_UI2(2); TFBIG_4o_UI2(3); TFBIG_4e_UI2(4); TFBIG_4o_UI2(5); TFBIG_4e_UI2(6); TFBIG_4o_UI2(7); TFBIG_4e_UI2(8); TFBIG_4o_UI2(9); TFBIG_4e_UI2(10); TFBIG_4o_UI2(11); TFBIG_4e_UI2(12); TFBIG_4o_UI2(13); TFBIG_4e_UI2(14); TFBIG_4o_UI2(15); TFBIG_4e_UI2(16); TFBIG_4o_UI2(17); TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); // output uint64_t *outpHash = &g_hash[hashPosition * 8U]; #pragma unroll 8 for(int i=0; i<8; i++) outpHash[i] = devectorize(p[i]); } } __global__ void quark_skein512_gpu_hash_64_sm3(uint32_t threads, uint32_t startNounce, uint64_t * const __restrict__ g_hash, uint32_t *g_nonceVector) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { // Skein uint64_t p[8]; uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8; uint64_t t0, t1, t2; uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); int hashPosition = nounce - startNounce; uint64_t *inpHash = &g_hash[hashPosition * 8]; // Init h0 = 0x4903ADFF749C51CEull; h1 = 0x0D95DE399746DF03ull; h2 = 0x8FD1934127C79BCEull; h3 = 0x9A255629FF352CB1ull; h4 = 0x5DB62599DF6CA7B0ull; h5 = 0xEABE394CA9D5C3F4ull; h6 = 0x991112C71A75B523ull; h7 = 0xAE18A40B660FCC33ull; // 1. Runde -> etype = 480, ptr = 64, bcount = 0, data = msg #pragma unroll 8 for(int i=0; i<8; i++) p[i] = inpHash[i]; t0 = 64; // ptr t1 = 480ull << 55; // etype TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); TFBIG_4e(0); TFBIG_4o(1); TFBIG_4e(2); TFBIG_4o(3); TFBIG_4e(4); TFBIG_4o(5); TFBIG_4e(6); TFBIG_4o(7); TFBIG_4e(8); TFBIG_4o(9); TFBIG_4e(10); TFBIG_4o(11); TFBIG_4e(12); TFBIG_4o(13); TFBIG_4e(14); TFBIG_4o(15); TFBIG_4e(16); TFBIG_4o(17); TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); h0 = inpHash[0] ^ p[0]; h1 = inpHash[1] ^ p[1]; h2 = inpHash[2] ^ p[2]; h3 = inpHash[3] ^ p[3]; h4 = inpHash[4] ^ p[4]; h5 = inpHash[5] ^ p[5]; h6 = inpHash[6] ^ p[6]; h7 = inpHash[7] ^ p[7]; // 2. Runde -> etype = 510, ptr = 8, bcount = 0, data = 0 #pragma unroll 8 for(int i=0; i<8; i++) p[i] = 0ull; t0 = 8; // ptr t1 = 510ull << 55; // etype TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); TFBIG_4e(0); TFBIG_4o(1); TFBIG_4e(2); TFBIG_4o(3); TFBIG_4e(4); TFBIG_4o(5); TFBIG_4e(6); TFBIG_4o(7); TFBIG_4e(8); TFBIG_4o(9); TFBIG_4e(10); TFBIG_4o(11); TFBIG_4e(12); TFBIG_4o(13); TFBIG_4e(14); TFBIG_4o(15); TFBIG_4e(16); TFBIG_4o(17); TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); // output uint64_t *outpHash = &g_hash[hashPosition * 8]; #pragma unroll 8 for(int i=0; i<8; i++) outpHash[i] = p[i]; } } __global__ __launch_bounds__(128,5) void skein512_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint64_t *output64, int swap) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { // Skein uint2 h0, h1, h2, h3, h4, h5, h6, h7, h8; uint2 t0, t1, t2; h0 = vectorize(c_PaddedMessage80[10]); h1 = vectorize(c_PaddedMessage80[11]); h2 = vectorize(c_PaddedMessage80[12]); h3 = vectorize(c_PaddedMessage80[13]); h4 = vectorize(c_PaddedMessage80[14]); h5 = vectorize(c_PaddedMessage80[15]); h6 = vectorize(c_PaddedMessage80[16]); h7 = vectorize(c_PaddedMessage80[17]); t2 = vectorize(c_PaddedMessage80[18]); uint32_t nonce = swap ? cuda_swab32(startNounce + thread) : startNounce + thread; uint2 nonce2 = make_uint2(_LOWORD(c_PaddedMessage80[9]), nonce); uint2 p[8]; p[0] = vectorize(c_PaddedMessage80[8]); p[1] = nonce2; #pragma unroll for (int i = 2; i < 8; i++) p[i] = vectorize(0ull); t0 = vectorize(0x50ull); t1 = vectorize(0xB000000000000000ull); TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); TFBIG_4e_UI2(0); TFBIG_4o_UI2(1); TFBIG_4e_UI2(2); TFBIG_4o_UI2(3); TFBIG_4e_UI2(4); TFBIG_4o_UI2(5); TFBIG_4e_UI2(6); TFBIG_4o_UI2(7); TFBIG_4e_UI2(8); TFBIG_4o_UI2(9); TFBIG_4e_UI2(10); TFBIG_4o_UI2(11); TFBIG_4e_UI2(12); TFBIG_4o_UI2(13); TFBIG_4e_UI2(14); TFBIG_4o_UI2(15); TFBIG_4e_UI2(16); TFBIG_4o_UI2(17); TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); uint64_t *outpHash = &output64[thread * 8]; outpHash[0] = c_PaddedMessage80[8] ^ devectorize(p[0]); outpHash[1] = devectorize(nonce2 ^ p[1]); #pragma unroll for(int i=2; i<8; i++) outpHash[i] = devectorize(p[i]); } } __global__ void skein512_gpu_hash_80_sm3(uint32_t threads, uint32_t startNounce, uint64_t *output64, int swap) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8; uint64_t t0, t1, t2; // Init h0 = 0x4903ADFF749C51CEull; h1 = 0x0D95DE399746DF03ull; h2 = 0x8FD1934127C79BCEull; h3 = 0x9A255629FF352CB1ull; h4 = 0x5DB62599DF6CA7B0ull; h5 = 0xEABE394CA9D5C3F4ull; h6 = 0x991112C71A75B523ull; h7 = 0xAE18A40B660FCC33ull; t0 = 64; // ptr //t1 = vectorize(0xE0ull << 55); // etype t1 = 0x7000000000000000ull; TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); uint64_t p[8]; #pragma unroll 8 for (int i = 0; i<8; i++) p[i] = c_PaddedMessage80[i]; TFBIG_4e(0); TFBIG_4o(1); TFBIG_4e(2); TFBIG_4o(3); TFBIG_4e(4); TFBIG_4o(5); TFBIG_4e(6); TFBIG_4o(7); TFBIG_4e(8); TFBIG_4o(9); TFBIG_4e(10); TFBIG_4o(11); TFBIG_4e(12); TFBIG_4o(13); TFBIG_4e(14); TFBIG_4o(15); TFBIG_4e(16); TFBIG_4o(17); TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); h0 = c_PaddedMessage80[0] ^ p[0]; h1 = c_PaddedMessage80[1] ^ p[1]; h2 = c_PaddedMessage80[2] ^ p[2]; h3 = c_PaddedMessage80[3] ^ p[3]; h4 = c_PaddedMessage80[4] ^ p[4]; h5 = c_PaddedMessage80[5] ^ p[5]; h6 = c_PaddedMessage80[6] ^ p[6]; h7 = c_PaddedMessage80[7] ^ p[7]; uint32_t nonce = swap ? cuda_swab32(startNounce + thread) : startNounce + thread; uint64_t nonce64 = MAKE_ULONGLONG(_LOWORD(c_PaddedMessage80[9]), nonce); // skein_big_close -> etype = 0x160, ptr = 16, bcount = 1, extra = 16 p[0] = c_PaddedMessage80[8]; p[1] = nonce64; #pragma unroll for (int i = 2; i < 8; i++) p[i] = 0ull; t0 = 0x50ull; // SPH_T64(bcount << 6) + (sph_u64)(extra); t1 = 0xB000000000000000ull; // (bcount >> 58) + ((sph_u64)(etype) << 55); TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); TFBIG_4e(0); TFBIG_4o(1); TFBIG_4e(2); TFBIG_4o(3); TFBIG_4e(4); TFBIG_4o(5); TFBIG_4e(6); TFBIG_4o(7); TFBIG_4e(8); TFBIG_4o(9); TFBIG_4e(10); TFBIG_4o(11); TFBIG_4e(12); TFBIG_4o(13); TFBIG_4e(14); TFBIG_4o(15); TFBIG_4e(16); TFBIG_4o(17); TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); // skein_big_close 2nd loop -> etype = 0x1fe, ptr = 8, bcount = 0 // output uint64_t *outpHash = &output64[thread * 8]; outpHash[0] = c_PaddedMessage80[8] ^ p[0]; outpHash[1] = nonce64 ^ p[1]; #pragma unroll for(int i=2; i<8; i++) outpHash[i] = p[i]; } } __global__ __launch_bounds__(128,6) void skein512_gpu_hash_close(uint32_t threads, uint32_t startNounce, uint64_t *g_hash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint2 t0 = vectorize(8); // extra uint2 t1 = vectorize(0xFF00000000000000ull); // etype uint2 t2 = vectorize(0xB000000000000050ull); uint64_t *state = &g_hash[thread * 8]; uint2 h0 = vectorize(state[0]); uint2 h1 = vectorize(state[1]); uint2 h2 = vectorize(state[2]); uint2 h3 = vectorize(state[3]); uint2 h4 = vectorize(state[4]); uint2 h5 = vectorize(state[5]); uint2 h6 = vectorize(state[6]); uint2 h7 = vectorize(state[7]); uint2 h8; TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); uint2 p[8] = { 0 }; TFBIG_4e_UI2(0); TFBIG_4o_UI2(1); TFBIG_4e_UI2(2); TFBIG_4o_UI2(3); TFBIG_4e_UI2(4); TFBIG_4o_UI2(5); TFBIG_4e_UI2(6); TFBIG_4o_UI2(7); TFBIG_4e_UI2(8); TFBIG_4o_UI2(9); TFBIG_4e_UI2(10); TFBIG_4o_UI2(11); TFBIG_4e_UI2(12); TFBIG_4o_UI2(13); TFBIG_4e_UI2(14); TFBIG_4o_UI2(15); TFBIG_4e_UI2(16); TFBIG_4o_UI2(17); TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); uint64_t *outpHash = state; #pragma unroll 8 for (int i = 0; i < 8; i++) outpHash[i] = devectorize(p[i]); } } __global__ __launch_bounds__(128,6) void skein512_gpu_hash_close_sm3(uint32_t threads, uint32_t startNounce, uint64_t *g_hash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint64_t t0 = 8ull; // extra uint64_t t1 = 0xFF00000000000000ull; // etype uint64_t t2 = 0xB000000000000050ull; uint64_t *state = &g_hash[thread * 8]; uint64_t h0 = state[0]; uint64_t h1 = state[1]; uint64_t h2 = state[2]; uint64_t h3 = state[3]; uint64_t h4 = state[4]; uint64_t h5 = state[5]; uint64_t h6 = state[6]; uint64_t h7 = state[7]; uint64_t h8; TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); uint64_t p[8] = { 0 }; TFBIG_4e(0); TFBIG_4o(1); TFBIG_4e(2); TFBIG_4o(3); TFBIG_4e(4); TFBIG_4o(5); TFBIG_4e(6); TFBIG_4o(7); TFBIG_4e(8); TFBIG_4o(9); TFBIG_4e(10); TFBIG_4o(11); TFBIG_4e(12); TFBIG_4o(13); TFBIG_4e(14); TFBIG_4o(15); TFBIG_4e(16); TFBIG_4o(17); TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); uint64_t *outpHash = state; #pragma unroll 8 for (int i = 0; i < 8; i++) outpHash[i] = p[i]; } } __host__ void quark_skein512_cpu_init(int thr_id, uint32_t threads) { // store the binary SM version cuda_get_arch(thr_id); } __host__ void quark_skein512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) { const uint32_t threadsperblock = 256; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); int dev_id = device_map[thr_id]; // uint2 uint64 variants for SM 3.2+ if (device_sm[dev_id] > 300 && cuda_arch[dev_id] > 300) quark_skein512_gpu_hash_64 <<>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector); else quark_skein512_gpu_hash_64_sm3 <<>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector); MyStreamSynchronize(NULL, order, thr_id); } /* skein / skein2 */ __host__ static void skein512_precalc_80(uint64_t* message) { uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8; uint64_t t0, t1, t2; h0 = 0x4903ADFF749C51CEull; h1 = 0x0D95DE399746DF03ull; h2 = 0x8FD1934127C79BCEull; h3 = 0x9A255629FF352CB1ull; h4 = 0x5DB62599DF6CA7B0ull; h5 = 0xEABE394CA9D5C3F4ull; h6 = 0x991112C71A75B523ull; h7 = 0xAE18A40B660FCC33ull; h8 = h0 ^ h1 ^ h2 ^ h3 ^ h4 ^ h5 ^ h6 ^ h7 ^ SPH_C64(0x1BD11BDAA9FC1A22); t0 = 64; // ptr t1 = 0x7000000000000000ull; t2 = 0x7000000000000040ull; uint64_t p[8]; for (int i = 0; i<8; i++) p[i] = message[i]; TFBIG_4e_PRE(0); TFBIG_4o_PRE(1); TFBIG_4e_PRE(2); TFBIG_4o_PRE(3); TFBIG_4e_PRE(4); TFBIG_4o_PRE(5); TFBIG_4e_PRE(6); TFBIG_4o_PRE(7); TFBIG_4e_PRE(8); TFBIG_4o_PRE(9); TFBIG_4e_PRE(10); TFBIG_4o_PRE(11); TFBIG_4e_PRE(12); TFBIG_4o_PRE(13); TFBIG_4e_PRE(14); TFBIG_4o_PRE(15); TFBIG_4e_PRE(16); TFBIG_4o_PRE(17); TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); message[10] = message[0] ^ p[0]; message[11] = message[1] ^ p[1]; message[12] = message[2] ^ p[2]; message[13] = message[3] ^ p[3]; message[14] = message[4] ^ p[4]; message[15] = message[5] ^ p[5]; message[16] = message[6] ^ p[6]; message[17] = message[7] ^ p[7]; message[18] = t2; } __host__ void skein512_cpu_setBlock_80(void *pdata) { uint64_t message[20]; memcpy(&message[0], pdata, 80); skein512_precalc_80(message); cudaMemcpyToSymbol(c_PaddedMessage80, message, sizeof(message), 0, cudaMemcpyHostToDevice); CUDA_SAFE_CALL(cudaGetLastError()); } __host__ void skein512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *g_hash, int swap) { const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); int dev_id = device_map[thr_id]; uint64_t *d_hash = (uint64_t*) g_hash; if (device_sm[dev_id] > 300 && cuda_arch[dev_id] > 300) { // hash function is cut in 2 parts to reduce kernel size skein512_gpu_hash_80 <<< grid, block >>> (threads, startNounce, d_hash, swap); skein512_gpu_hash_close <<< grid, block >>> (threads, startNounce, d_hash); } else { // variant without uint2 variables skein512_gpu_hash_80_sm3 <<< grid, block >>> (threads, startNounce, d_hash, swap); skein512_gpu_hash_close_sm3 <<< grid, block >>> (threads, startNounce, d_hash); } }