/** * Optimized Blake-256 8-rounds Cuda Kernel (Tested on SM >3.0) * Based upon Blake-256 implementation of Tanguy Pruvot - Nov. 2014 * * Provos Alexis - Jan. 2016 * * Fixed CUDA 7.5 flaw * minor code changes * code cleanup * increased nonces per thread * removed SSE2 midstate computation * Provos Alexis - Mar 2016 */ #include #include #include "miner.h" extern "C" { #include "sph/sph_blake.h" } #include "cuda_helper.h" #ifdef __INTELLISENSE__ #define __byte_perm(x, y, b) x #endif /* threads per block and nonces per thread */ #define TPB 768 #define NPT 384 #define NBN 2 __constant__ uint32_t _ALIGN(16) d_data[21]; /* 16 gpu threads max */ static uint32_t *d_resNonce[MAX_GPUS]; static uint32_t *h_resNonce[MAX_GPUS]; static cudaStream_t streams[MAX_GPUS]; /* hash by cpu with blake 256 */ extern "C" void vanillahash(void *output, const void *input, int8_t blakerounds){ uchar hash[64]; sph_blake256_context ctx; sph_blake256_set_rounds(blakerounds); sph_blake256_init(&ctx); sph_blake256(&ctx, input, 80); sph_blake256_close(&ctx, hash); memcpy(output, hash, 32); } #define GS4(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2,a3,b3,c3,d3,x3,y3) { \ v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \ v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \ v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \ v[a3]+= (m[x3] ^ z[y3]) + v[b3]; \ \ v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \ v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \ v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \ v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x1032); \ \ v[ c]+= v[ d]; \ v[c1]+= v[d1]; \ v[c2]+= v[d2]; \ v[c3]+= v[d3]; \ \ v[ b] = ROTR32(v[ b] ^ v[ c], 12); \ v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ v[b2] = ROTR32(v[b2] ^ v[c2], 12); \ v[b3] = ROTR32(v[b3] ^ v[c3], 12); \ \ v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \ v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \ v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \ v[a3]+= (m[y3] ^ z[x3]) + v[b3]; \ \ v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \ v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \ v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \ v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x0321); \ \ v[ c]+= v[ d]; \ v[c1]+= v[d1]; \ v[c2]+= v[d2]; \ v[c3]+= v[d3]; \ \ v[ b] = ROTR32(v[ b] ^ v[ c], 7); \ v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ v[b2] = ROTR32(v[b2] ^ v[c2], 7); \ v[b3] = ROTR32(v[b3] ^ v[c3], 7); \ } #define GS3(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2) { \ v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \ v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \ v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \ \ v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \ v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \ v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \ \ v[ c]+= v[ d]; \ v[c1]+= v[d1]; \ v[c2]+= v[d2]; \ \ v[ b] = ROTR32(v[ b] ^ v[ c], 12); \ v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ v[b2] = ROTR32(v[b2] ^ v[c2], 12); \ \ v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \ v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \ v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \ \ v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \ v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \ v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \ \ v[ c]+= v[ d]; \ v[c1]+= v[d1]; \ v[c2]+= v[d2]; \ \ v[ b] = ROTR32(v[ b] ^ v[ c], 7); \ v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ v[b2] = ROTR32(v[b2] ^ v[c2], 7); \ } #define GS2(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1) { \ v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \ v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \ \ v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \ v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \ \ v[ c]+= v[ d]; \ v[c1]+= v[d1]; \ \ v[ b] = ROTR32(v[ b] ^ v[ c], 12); \ v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ \ v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \ v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \ \ v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \ v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \ \ v[ c]+= v[ d]; \ v[c1]+= v[d1]; \ \ v[ b] = ROTR32(v[ b] ^ v[ c], 7); \ v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ } #define GS(a,b,c,d,x,y) { \ v[a] += (m[x] ^ z[y]) + v[b]; \ v[d] = __byte_perm(v[d] ^ v[a],0, 0x1032); \ v[c] += v[d]; \ v[b] = ROTR32(v[b] ^ v[c], 12); \ v[a] += (m[y] ^ z[x]) + v[b]; \ v[d] = __byte_perm(v[d] ^ v[a],0, 0x0321); \ v[c] += v[d]; \ v[b] = ROTR32(v[b] ^ v[c], 7); \ } __global__ __launch_bounds__(TPB,1) void vanilla_gpu_hash_16_8(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,const uint64_t highTarget){ uint32_t _ALIGN(16) v[16]; uint32_t _ALIGN(16) tmp[16]; const size_t thread = blockDim.x * blockIdx.x + threadIdx.x; const uint64_t step = gridDim.x * blockDim.x; const uint64_t maxNonce = startNonce + threads; const int8_t r[][16] = { { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } }; const uint32_t z[16] = { 0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, 0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 }; //PREFETCH #pragma unroll for(int i=0;i<16;i++){ tmp[ i] = d_data[ i]; } uint32_t m[16] = { d_data[16], d_data[17], d_data[18], 0, 0x80000000UL, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 640 }; const uint32_t h7 = d_data[19]; const uint32_t h6 = d_data[20]; //END OF PREFETCH uint64_t m3 = startNonce + thread; loopstart: if(m3>=maxNonce)return; m[3] = m3; #pragma unroll for(int i=0;i<16;i++) v[ i] = tmp[ i]; v[ 1]+= m[3] ^ z[2]; v[13] = __byte_perm(v[13] ^ v[1],0, 0x0321); v[ 9]+= v[13]; v[ 5] = ROTR32(v[5] ^ v[9], 7); v[ 0]+= v[5]; v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032); v[10]+= v[15]; v[ 5] = ROTR32(v[5] ^ v[10], 12); v[ 0]+= z[8] + v[5]; v[15] = __byte_perm(v[15] ^ v[0],0, 0x0321); v[10]+= v[15]; v[ 5] = ROTR32(v[5] ^ v[10], 7); GS3( 1, 6,11,12,10,11, 2, 7, 8,13,12,13, 3, 4, 9,14,14,15); #pragma unroll for(int i=0;i<6;i++){ GS4(0, 4, 8,12,r[i][ 0],r[i][ 1], 1, 5, 9,13,r[i][ 2],r[i][ 3], 2, 6,10,14,r[i][ 4],r[i][ 5], 3, 7,11,15,r[i][ 6],r[i][ 7]); GS4(0, 5,10,15,r[i][ 8],r[i][ 9], 1, 6,11,12,r[i][10],r[i][11], 2, 7, 8,13,r[i][12],r[i][13], 3, 4, 9,14,r[i][14],r[i][15]); } GS4(0, 4, 8,12,r[6][ 0],r[6][ 1], 1, 5, 9,13,r[6][ 2],r[6][ 3], 2, 6,10,14,r[6][ 4],r[6][ 5], 3, 7,11,15,r[6][ 6],r[6][ 7]); v[ 0] += (m[ 5] ^ z[0]) + v[5]; v[ 2] += (m[ 8] ^ z[6]) + v[7]; v[13] = __byte_perm(v[13] ^ v[2],0, 0x1032); v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032); v[ 8] += v[13]; v[10] += v[15]; v[ 5] = ROTR32(v[ 5] ^ v[10], 12); v[ 7] = ROTR32(v[ 7] ^ v[ 8], 12); v[ 0] += (m[ 0] ^ z[5]) + v[5]; v[ 2] += (m[ 6] ^ z[8]) + v[7]; v[15] = __byte_perm(v[15] ^ v[ 0],0, 0x0321); v[13] = __byte_perm(v[13] ^ v[ 2],0, 0x0321); v[8] += v[13]; v[7] = ROTR32(v[7] ^ v[8], 7); // only compute h6 & 7 if((v[15]^h7)==v[7]){ v[ 1] += (m[15] ^ z[ 4]) + v[6]; v[ 3] += (m[2] ^ z[10]) + v[4]; v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x1032); v[14] = __byte_perm(v[14] ^ v[3],0, 0x1032); v[11] += v[12]; v[ 9] += v[14]; v[ 6] = ROTR32(v[ 6] ^ v[11], 12); v[ 1] += (m[ 4] ^ z[15]) + v[ 6]; v[ 3] += (m[10] ^ z[ 2]) + ROTR32(v[ 4] ^ v[ 9],12); v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x0321); v[14] = __byte_perm(v[14] ^ v[ 3],0, 0x0321); v[11] += v[12]; v[ 6] = ROTR32(v[ 6] ^ v[11], 7); if(cuda_swab32(h6^v[6]^v[14]) <= highTarget) { #if NBN == 2 /* keep the smallest nonce, + extra one if found */ if (m[3] < resNonce[0]){ resNonce[1] = resNonce[0]; resNonce[0] = m[3]; } else resNonce[1] = m[3]; #else resNonce[0] = m[3]; #endif return; //<-- this may cause a problem on extranonce if the extranonce is on position current_nonce + X * step where X=[1,2,3..,N] } } m3+=step; goto loopstart; } __host__ void vanilla_cpu_setBlock_16(const int thr_id,const uint32_t* endiandata, uint32_t *penddata){ const uint32_t _ALIGN(64) z[16] = { SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344), SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) }; uint32_t _ALIGN(64) h[22]; sph_blake256_context ctx; sph_blake256_set_rounds(8); sph_blake256_init(&ctx); sph_blake256(&ctx, endiandata, 64); h[ 0] = ctx.H[0]; h[ 1] = ctx.H[1]; h[ 2] = ctx.H[2]; h[21] = ctx.H[3]; h[ 4] = ctx.H[4]; h[20] = ctx.H[5]; h[19] = ctx.H[6]; h[16] = ctx.H[7]; uint32_t tmp = h[20]; h[20] = h[19]; h[19] = h[16]; h[16] = penddata[ 0]; h[17] = penddata[ 1]; h[18] = penddata[ 2]; h[12] = z[ 4] ^ 640; h[ 8] = z[ 0]; h[ 0] += (h[16] ^ z[ 1]) + h[ 4]; h[12] = SPH_ROTR32(h[12] ^ h[0],16); h[ 8] += h[12]; h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 12); h[ 0] += (h[17] ^ z[ 0]) + h[ 4]; h[12] = SPH_ROTR32(h[12] ^ h[0],8); h[ 8] += h[12]; h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 7); h[1] += (h[18] ^ z[ 3]) + tmp; h[13] = SPH_ROTR32(z[ 5] ^ 640 ^ h[1],16); h[ 5] = ROTR32(tmp ^ (z[ 1] + h[13]), 12); h[ 1] += h[ 5]; h[ 2] += (0x80000000UL ^ z[ 5]) + h[20]; h[14] = SPH_ROTR32(z[ 6] ^ h[2], 16); h[ 6] = z[ 2] + h[14]; h[ 6] = SPH_ROTR32(h[20] ^ h[ 6], 12); h[21] += z[ 7] + h[19]; h[ 0] += z[ 9]; h[ 2] += z[ 4] + h[ 6]; h[ 9] = z[ 1] + h[13]; h[10] = z[ 2] + h[14]; h[14] = SPH_ROTR32(h[14] ^ h[2],8); //0x0321 h[10]+=h[14]; h[ 6] = SPH_ROTR32(h[ 6] ^ h[10],7); h[15] = SPH_ROTR32(z[ 7] ^ h[21],16); h[11] = z[ 3] + h[15]; h[ 7] = SPH_ROTR32(h[19] ^ h[11], 12); h[ 3] = h[21] + h[ 7] + z[ 6]; h[15] = SPH_ROTR32(h[15] ^ h[ 3],8); h[11]+= h[15]; h[ 7] = ROTR32(h[ 7] ^ h[11],7); cudaMemcpyToSymbolAsync(d_data, h, 21*sizeof(uint32_t), 0, cudaMemcpyHostToDevice, streams[thr_id]); } static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_vanilla(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done, const int8_t blakerounds) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; const uint32_t targetHigh = ptarget[6]; int dev_id = device_map[thr_id]; int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 30 : 24; if (device_sm[dev_id] < 350) intensity = 22; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (!init[thr_id]) { cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage (linux) cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); cudaStreamCreate(&streams[thr_id]); init[thr_id] = true; } uint32_t _ALIGN(64) endiandata[20]; for (int k = 0; k < 16; k++) be32enc(&endiandata[k], pdata[k]); cudaMemsetAsync(d_resNonce[thr_id], 0xff, sizeof(uint32_t),streams[thr_id]); vanilla_cpu_setBlock_16(thr_id,endiandata,&pdata[16]); const dim3 grid((throughput + (NPT*TPB)-1)/(NPT*TPB)); const dim3 block(TPB); int rc = 0; do { vanilla_gpu_hash_16_8<<>>(throughput, pdata[19], d_resNonce[thr_id], targetHigh); cudaMemcpyAsync(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost,streams[thr_id]); *hashes_done = pdata[19] - first_nonce + throughput; cudaStreamSynchronize(streams[thr_id]); if (h_resNonce[thr_id][0] != UINT32_MAX){ uint32_t vhashcpu[8]; uint32_t Htarg = (uint32_t)targetHigh; for (int k=0; k < 19; k++) be32enc(&endiandata[k], pdata[k]); be32enc(&endiandata[19], h_resNonce[thr_id][0]); vanillahash(vhashcpu, endiandata, blakerounds); if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) { work->valid_nonces = 1; work->nonces[0] = h_resNonce[thr_id][0]; work_set_target_ratio(work, vhashcpu); #if NBN > 1 if (h_resNonce[thr_id][1] != UINT32_MAX) { work->nonces[1] = h_resNonce[thr_id][1]; be32enc(&endiandata[19], h_resNonce[thr_id][1]); vanillahash(vhashcpu, endiandata, blakerounds); if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio[0]) { work_set_target_ratio(work, vhashcpu); xchg(work->nonces[0], work->nonces[1]); } work->valid_nonces = 2; pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; } else { pdata[19] = work->nonces[0] + 1; // cursor } #endif return work->valid_nonces; } else if (vhashcpu[6] > Htarg) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", h_resNonce[thr_id][0]); pdata[19] = work->nonces[0] + 1; continue; } } if ((uint64_t) throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; MyStreamSynchronize(NULL, 0, dev_id); return rc; } // cleanup extern "C" void free_vanilla(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFreeHost(h_resNonce[thr_id]); cudaFree(d_resNonce[thr_id]); init[thr_id] = false; cudaDeviceSynchronize(); }