// Auf QuarkCoin spezialisierte Version von Groestl #include #include "cuda_runtime.h" #include "device_launch_parameters.h" #include #include // it's unfortunate that this is a compile time constant. #define MAXWELL_OR_FERMI 0 // aus cpu-miner.c extern int device_map[8]; // aus heavy.cu extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); // Folgende Definitionen später durch header ersetzen typedef unsigned char uint8_t; typedef unsigned int uint32_t; typedef unsigned long long uint64_t; // diese Struktur wird in der Init Funktion angefordert static cudaDeviceProp props[8]; #define SPH_C32(x) ((uint32_t)(x ## U)) #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF)) #define PC32up(j, r) ((uint32_t)((j) + (r))) #define PC32dn(j, r) 0 #define QC32up(j, r) 0xFFFFFFFF #define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24))) #define B32_0(x) __byte_perm(x, 0, 0x4440) //((x) & 0xFF) #define B32_1(x) __byte_perm(x, 0, 0x4441) //(((x) >> 8) & 0xFF) #define B32_2(x) __byte_perm(x, 0, 0x4442) //(((x) >> 16) & 0xFF) #define B32_3(x) __byte_perm(x, 0, 0x4443) //((x) >> 24) #if MAXWELL_OR_FEMRI #define USE_SHARED 1 // Maxwell and Fermi cards get the best speed with SHARED access it seems. #if USE_SHARED #define T0up(x) (*((uint32_t*)mixtabs + ( (x)))) #define T0dn(x) (*((uint32_t*)mixtabs + (256+(x)))) #define T1up(x) (*((uint32_t*)mixtabs + (512+(x)))) #define T1dn(x) (*((uint32_t*)mixtabs + (768+(x)))) #define T2up(x) (*((uint32_t*)mixtabs + (1024+(x)))) #define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x)))) #define T3up(x) (*((uint32_t*)mixtabs + (1536+(x)))) #define T3dn(x) (*((uint32_t*)mixtabs + (1792+(x)))) #else #define T0up(x) tex1Dfetch(t0up1, x) #define T0dn(x) tex1Dfetch(t0dn1, x) #define T1up(x) tex1Dfetch(t1up1, x) #define T1dn(x) tex1Dfetch(t1dn1, x) #define T2up(x) tex1Dfetch(t2up1, x) #define T2dn(x) tex1Dfetch(t2dn1, x) #define T3up(x) tex1Dfetch(t3up1, x) #define T3dn(x) tex1Dfetch(t3dn1, x) #endif #else #define USE_SHARED 1 // a healthy mix between shared and textured access provides the highest speed on Compute 3.0 and 3.5! #define T0up(x) (*((uint32_t*)mixtabs + ( (x)))) #define T0dn(x) tex1Dfetch(t0dn1, x) #define T1up(x) tex1Dfetch(t1up1, x) #define T1dn(x) (*((uint32_t*)mixtabs + (768+(x)))) #define T2up(x) tex1Dfetch(t2up1, x) #define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x)))) #define T3up(x) (*((uint32_t*)mixtabs + (1536+(x)))) #define T3dn(x) tex1Dfetch(t3dn1, x) #endif texture t0up1; texture t0dn1; texture t1up1; texture t1dn1; texture t2up1; texture t2dn1; texture t3up1; texture t3dn1; extern uint32_t T0up_cpu[]; extern uint32_t T0dn_cpu[]; extern uint32_t T1up_cpu[]; extern uint32_t T1dn_cpu[]; extern uint32_t T2up_cpu[]; extern uint32_t T2dn_cpu[]; extern uint32_t T3up_cpu[]; extern uint32_t T3dn_cpu[]; __device__ __forceinline__ void quark_groestl512_perm_P(uint32_t *a, char *mixtabs) { uint32_t t[32]; //#pragma unroll 14 for(int r=0;r<14;r++) { switch(r) { case 0: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 0); break; case 1: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 1); break; case 2: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 2); break; case 3: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 3); break; case 4: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 4); break; case 5: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 5); break; case 6: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 6); break; case 7: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 7); break; case 8: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 8); break; case 9: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 9); break; case 10: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 10); break; case 11: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 11); break; case 12: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 12); break; case 13: #pragma unroll 16 for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k<< 4, 13); break; } // RBTT #pragma unroll 16 for(int k=0;k<32;k+=2) { uint32_t t0_0 = B32_0(a[(k ) & 0x1f]), t9_0 = B32_0(a[(k + 9) & 0x1f]); uint32_t t2_1 = B32_1(a[(k + 2) & 0x1f]), t11_1 = B32_1(a[(k + 11) & 0x1f]); uint32_t t4_2 = B32_2(a[(k + 4) & 0x1f]), t13_2 = B32_2(a[(k + 13) & 0x1f]); uint32_t t6_3 = B32_3(a[(k + 6) & 0x1f]), t23_3 = B32_3(a[(k + 23) & 0x1f]); t[k + 0] = T0up( t0_0 ) ^ T1up( t2_1 ) ^ T2up( t4_2 ) ^ T3up( t6_3 ) ^ T0dn( t9_0 ) ^ T1dn( t11_1 ) ^ T2dn( t13_2 ) ^ T3dn( t23_3 ); t[k + 1] = T0dn( t0_0 ) ^ T1dn( t2_1 ) ^ T2dn( t4_2 ) ^ T3dn( t6_3 ) ^ T0up( t9_0 ) ^ T1up( t11_1 ) ^ T2up( t13_2 ) ^ T3up( t23_3 ); } #pragma unroll 32 for(int k=0;k<32;k++) a[k] = t[k]; } } __device__ __forceinline__ void quark_groestl512_perm_Q(uint32_t *a, char *mixtabs) { //#pragma unroll 14 for(int r=0;r<14;r++) { uint32_t t[32]; switch(r) { case 0: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 0); a[(k*2)+1] ^= QC32dn(k<< 4, 0);} break; case 1: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 1); a[(k*2)+1] ^= QC32dn(k<< 4, 1);} break; case 2: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 2); a[(k*2)+1] ^= QC32dn(k<< 4, 2);} break; case 3: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 3); a[(k*2)+1] ^= QC32dn(k<< 4, 3);} break; case 4: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 4); a[(k*2)+1] ^= QC32dn(k<< 4, 4);} break; case 5: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 5); a[(k*2)+1] ^= QC32dn(k<< 4, 5);} break; case 6: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 6); a[(k*2)+1] ^= QC32dn(k<< 4, 6);} break; case 7: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 7); a[(k*2)+1] ^= QC32dn(k<< 4, 7);} break; case 8: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 8); a[(k*2)+1] ^= QC32dn(k<< 4, 8);} break; case 9: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 9); a[(k*2)+1] ^= QC32dn(k<< 4, 9);} break; case 10: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 10); a[(k*2)+1] ^= QC32dn(k<< 4, 10);} break; case 11: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 11); a[(k*2)+1] ^= QC32dn(k<< 4, 11);} break; case 12: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 12); a[(k*2)+1] ^= QC32dn(k<< 4, 12);} break; case 13: #pragma unroll 16 for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k<< 4, 13); a[(k*2)+1] ^= QC32dn(k<< 4, 13);} break; } // RBTT #pragma unroll 16 for(int k=0;k<32;k+=2) { uint32_t t2_0 = B32_0(a[(k + 2) & 0x1f]), t1_0 = B32_0(a[(k + 1) & 0x1f]); uint32_t t6_1 = B32_1(a[(k + 6) & 0x1f]), t5_1 = B32_1(a[(k + 5) & 0x1f]); uint32_t t10_2 = B32_2(a[(k + 10) & 0x1f]), t9_2 = B32_2(a[(k + 9) & 0x1f]); uint32_t t22_3 = B32_3(a[(k + 22) & 0x1f]), t13_3 = B32_3(a[(k + 13) & 0x1f]); t[k + 0] = T0up( t2_0 ) ^ T1up( t6_1 ) ^ T2up( t10_2 ) ^ T3up( t22_3 ) ^ T0dn( t1_0 ) ^ T1dn( t5_1 ) ^ T2dn( t9_2 ) ^ T3dn( t13_3 ); t[k + 1] = T0dn( t2_0 ) ^ T1dn( t6_1 ) ^ T2dn( t10_2 ) ^ T3dn( t22_3 ) ^ T0up( t1_0 ) ^ T1up( t5_1 ) ^ T2up( t9_2 ) ^ T3up( t13_3 ); } #pragma unroll 32 for(int k=0;k<32;k++) a[k] = t[k]; } } __global__ void quark_groestl512_gpu_hash_64(int threads, uint32_t startNounce, uint32_t *g_hash, uint32_t *g_nonceVector) { #if USE_SHARED extern __shared__ char mixtabs[]; if (threadIdx.x < 256) { *((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x); *((uint32_t*)mixtabs + (256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x); *((uint32_t*)mixtabs + (512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x); *((uint32_t*)mixtabs + (768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x); *((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x); *((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x); *((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x); *((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x); } __syncthreads(); #endif int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { // GROESTL uint32_t message[32]; uint32_t state[32]; uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); int hashPosition = nounce - startNounce; uint32_t *inpHash = &g_hash[16 * hashPosition]; #pragma unroll 16 for(int k=0;k<16;k++) message[k] = inpHash[k]; #pragma unroll 14 for(int k=1;k<15;k++) message[k+16] = 0; message[16] = 0x80; message[31] = 0x01000000; #pragma unroll 32 for(int u=0;u<32;u++) state[u] = message[u]; state[31] ^= 0x20000; // Perm #if USE_SHARED quark_groestl512_perm_P(state, mixtabs); state[31] ^= 0x20000; quark_groestl512_perm_Q(message, mixtabs); #else quark_groestl512_perm_P(state, NULL); state[31] ^= 0x20000; quark_groestl512_perm_Q(message, NULL); #endif #pragma unroll 32 for(int u=0;u<32;u++) state[u] ^= message[u]; #pragma unroll 32 for(int u=0;u<32;u++) message[u] = state[u]; #if USE_SHARED quark_groestl512_perm_P(message, mixtabs); #else quark_groestl512_perm_P(message, NULL); #endif #pragma unroll 32 for(int u=0;u<32;u++) state[u] ^= message[u]; // Erzeugten Hash rausschreiben uint32_t *outpHash = &g_hash[16 * hashPosition]; #pragma unroll 16 for(int k=0;k<16;k++) outpHash[k] = state[k+16]; } } #define texDef(texname, texmem, texsource, texsize) \ unsigned int *texmem; \ cudaMalloc(&texmem, texsize); \ cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \ texname.normalized = 0; \ texname.filterMode = cudaFilterModePoint; \ texname.addressMode[0] = cudaAddressModeClamp; \ { cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(); \ cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); } \ // Setup-Funktionen __host__ void quark_groestl512_cpu_init(int thr_id, int threads) { cudaGetDeviceProperties(&props[thr_id], device_map[thr_id]); // Texturen mit obigem Makro initialisieren texDef(t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256); texDef(t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256); texDef(t1up1, d_T1up, T1up_cpu, sizeof(uint32_t)*256); texDef(t1dn1, d_T1dn, T1dn_cpu, sizeof(uint32_t)*256); texDef(t2up1, d_T2up, T2up_cpu, sizeof(uint32_t)*256); texDef(t2dn1, d_T2dn, T2dn_cpu, sizeof(uint32_t)*256); texDef(t3up1, d_T3up, T3up_cpu, sizeof(uint32_t)*256); texDef(t3dn1, d_T3dn, T3dn_cpu, sizeof(uint32_t)*256); } __host__ void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) { // Compute 3.5 und 5.x Geräte am besten mit 768 Threads ansteuern, // alle anderen mit 512 Threads. int threadsperblock = ((props[thr_id].major == 3 && props[thr_id].minor == 5) || props[thr_id].major > 3) ? 768 : 512; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); // Größe des dynamischen Shared Memory Bereichs #if USE_SHARED size_t shared_size = 8 * 256 * sizeof(uint32_t); #else size_t shared_size = 0; #endif // fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); //fprintf(stderr, "ThrID: %d\n", thr_id); quark_groestl512_gpu_hash_64<<>>(threads, startNounce, d_hash, d_nonceVector); // Strategisches Sleep Kommando zur Senkung der CPU Last MyStreamSynchronize(NULL, order, thr_id); } __host__ void quark_doublegroestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) { // Compute 3.5 und 5.x Geräte am besten mit 768 Threads ansteuern, // alle anderen mit 512 Threads. int threadsperblock = ((props[thr_id].major == 3 && props[thr_id].minor == 5) || props[thr_id].major > 3) ? 768 : 512; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); // Größe des dynamischen Shared Memory Bereichs #if USE_SHARED size_t shared_size = 8 * 256 * sizeof(uint32_t); #else size_t shared_size = 0; #endif // fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); //fprintf(stderr, "ThrID: %d\n", thr_id); quark_groestl512_gpu_hash_64<<>>(threads, startNounce, d_hash, d_nonceVector); quark_groestl512_gpu_hash_64<<>>(threads, startNounce, d_hash, d_nonceVector); // Strategisches Sleep Kommando zur Senkung der CPU Last MyStreamSynchronize(NULL, order, thr_id); }