/** * Whirlpool-512 CUDA implementation. * * ==========================(LICENSE BEGIN)============================ * * Copyright (c) 2014-2016 djm34, tpruvot, SP, Provos Alexis * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * ===========================(LICENSE END)============================= * @author djm34 (initial draft) * @author tpruvot (dual old/whirlpool modes, midstate) * @author SP ("final" function opt and tuning) * @author Provos Alexis (Applied partial shared memory utilization, precomputations, merging & tuning for 970/750ti under CUDA7.5 -> +93% increased throughput of whirlpool) */ // Change with caution, used by shared mem fetch #define TPB80 384 #define TPB64 384 extern "C" { #include #include } #include #include #include #define xor3x(a,b,c) (a^b^c) #include "cuda_whirlpool_tables.cuh" __device__ static uint64_t b0[256]; __device__ static uint64_t b7[256]; __constant__ static uint2 precomputed_round_key_64[72]; __constant__ static uint2 precomputed_round_key_80[80]; __device__ static uint2 c_PaddedMessage80[16]; /** * Round constants. */ __device__ uint2 InitVector_RC[10]; static uint32_t *d_resNonce[MAX_GPUS]; //--------START OF WHIRLPOOL DEVICE MACROS--------------------------------------------------------------------------- __device__ __forceinline__ void static TRANSFER(uint2 *const __restrict__ dst,const uint2 *const __restrict__ src){ dst[0] = src[ 0]; dst[1] = src[ 1]; dst[2] = src[ 2]; dst[3] = src[ 3]; dst[4] = src[ 4]; dst[5] = src[ 5]; dst[6] = src[ 6]; dst[7] = src[ 7]; } __device__ __forceinline__ static uint2 d_ROUND_ELT_LDG(const uint2 sharedMemory[7][256],const uint2 *const __restrict__ in,const int i0, const int i1, const int i2, const int i3, const int i4, const int i5, const int i6, const int i7){ uint2 ret = __ldg((uint2*)&b0[__byte_perm(in[i0].x, 0, 0x4440)]); ret ^= sharedMemory[1][__byte_perm(in[i1].x, 0, 0x4441)]; ret ^= sharedMemory[2][__byte_perm(in[i2].x, 0, 0x4442)]; ret ^= sharedMemory[3][__byte_perm(in[i3].x, 0, 0x4443)]; ret ^= sharedMemory[4][__byte_perm(in[i4].y, 0, 0x4440)]; ret ^= ROR24(__ldg((uint2*)&b0[__byte_perm(in[i5].y, 0, 0x4441)])); ret ^= ROR8(__ldg((uint2*)&b7[__byte_perm(in[i6].y, 0, 0x4442)])); ret ^= __ldg((uint2*)&b7[__byte_perm(in[i7].y, 0, 0x4443)]); return ret; } __device__ __forceinline__ static uint2 d_ROUND_ELT(const uint2 sharedMemory[7][256],const uint2 *const __restrict__ in,const int i0, const int i1, const int i2, const int i3, const int i4, const int i5, const int i6, const int i7){ uint2 ret = __ldg((uint2*)&b0[__byte_perm(in[i0].x, 0, 0x4440)]); ret ^= sharedMemory[1][__byte_perm(in[i1].x, 0, 0x4441)]; ret ^= sharedMemory[2][__byte_perm(in[i2].x, 0, 0x4442)]; ret ^= sharedMemory[3][__byte_perm(in[i3].x, 0, 0x4443)]; ret ^= sharedMemory[4][__byte_perm(in[i4].y, 0, 0x4440)]; ret ^= sharedMemory[5][__byte_perm(in[i5].y, 0, 0x4441)]; ret ^= ROR8(__ldg((uint2*)&b7[__byte_perm(in[i6].y, 0, 0x4442)])); ret ^= __ldg((uint2*)&b7[__byte_perm(in[i7].y, 0, 0x4443)]); return ret; } __device__ __forceinline__ static uint2 d_ROUND_ELT1_LDG(const uint2 sharedMemory[7][256],const uint2 *const __restrict__ in,const int i0, const int i1, const int i2, const int i3, const int i4, const int i5, const int i6, const int i7, const uint2 c0){ uint2 ret = __ldg((uint2*)&b0[__byte_perm(in[i0].x, 0, 0x4440)]); ret ^= sharedMemory[1][__byte_perm(in[i1].x, 0, 0x4441)]; ret ^= sharedMemory[2][__byte_perm(in[i2].x, 0, 0x4442)]; ret ^= sharedMemory[3][__byte_perm(in[i3].x, 0, 0x4443)]; ret ^= sharedMemory[4][__byte_perm(in[i4].y, 0, 0x4440)]; ret ^= ROR24(__ldg((uint2*)&b0[__byte_perm(in[i5].y, 0, 0x4441)])); ret ^= ROR8(__ldg((uint2*)&b7[__byte_perm(in[i6].y, 0, 0x4442)])); ret ^= __ldg((uint2*)&b7[__byte_perm(in[i7].y, 0, 0x4443)]); ret ^= c0; return ret; } __device__ __forceinline__ static uint2 d_ROUND_ELT1(const uint2 sharedMemory[7][256],const uint2 *const __restrict__ in,const int i0, const int i1, const int i2, const int i3, const int i4, const int i5, const int i6, const int i7, const uint2 c0){ uint2 ret = __ldg((uint2*)&b0[__byte_perm(in[i0].x, 0, 0x4440)]); ret ^= sharedMemory[1][__byte_perm(in[i1].x, 0, 0x4441)]; ret ^= sharedMemory[2][__byte_perm(in[i2].x, 0, 0x4442)]; ret ^= sharedMemory[3][__byte_perm(in[i3].x, 0, 0x4443)]; ret ^= sharedMemory[4][__byte_perm(in[i4].y, 0, 0x4440)]; ret ^= sharedMemory[5][__byte_perm(in[i5].y, 0, 0x4441)]; ret ^= ROR8(__ldg((uint2*)&b7[__byte_perm(in[i6].y, 0, 0x4442)]));//sharedMemory[6][__byte_perm(in[i6].y, 0, 0x4442)] ret ^= __ldg((uint2*)&b7[__byte_perm(in[i7].y, 0, 0x4443)]);//sharedMemory[7][__byte_perm(in[i7].y, 0, 0x4443)] ret ^= c0; return ret; } //--------END OF WHIRLPOOL DEVICE MACROS----------------------------------------------------------------------------- //--------START OF WHIRLPOOL HOST MACROS----------------------------------------------------------------------------- #define table_skew(val,num) SPH_ROTL64(val,8*num) #define BYTE(x, n) ((unsigned)((x) >> (8 * (n))) & 0xFF) #define ROUND_ELT(table, in, i0, i1, i2, i3, i4, i5, i6, i7) \ (table[BYTE(in[i0], 0)] \ ^ table_skew(table[BYTE(in[i1], 1)], 1) \ ^ table_skew(table[BYTE(in[i2], 2)], 2) \ ^ table_skew(table[BYTE(in[i3], 3)], 3) \ ^ table_skew(table[BYTE(in[i4], 4)], 4) \ ^ table_skew(table[BYTE(in[i5], 5)], 5) \ ^ table_skew(table[BYTE(in[i6], 6)], 6) \ ^ table_skew(table[BYTE(in[i7], 7)], 7)) #define ROUND(table, in, out, c0, c1, c2, c3, c4, c5, c6, c7) do { \ out[0] = ROUND_ELT(table, in, 0, 7, 6, 5, 4, 3, 2, 1) ^ c0; \ out[1] = ROUND_ELT(table, in, 1, 0, 7, 6, 5, 4, 3, 2) ^ c1; \ out[2] = ROUND_ELT(table, in, 2, 1, 0, 7, 6, 5, 4, 3) ^ c2; \ out[3] = ROUND_ELT(table, in, 3, 2, 1, 0, 7, 6, 5, 4) ^ c3; \ out[4] = ROUND_ELT(table, in, 4, 3, 2, 1, 0, 7, 6, 5) ^ c4; \ out[5] = ROUND_ELT(table, in, 5, 4, 3, 2, 1, 0, 7, 6) ^ c5; \ out[6] = ROUND_ELT(table, in, 6, 5, 4, 3, 2, 1, 0, 7) ^ c6; \ out[7] = ROUND_ELT(table, in, 7, 6, 5, 4, 3, 2, 1, 0) ^ c7; \ } while (0) __host__ static void ROUND_KSCHED(const uint64_t *in,uint64_t *out,const uint64_t c){ const uint64_t *a = in; uint64_t *b = out; ROUND(old1_T0, a, b, c, 0, 0, 0, 0, 0, 0, 0); } //--------END OF WHIRLPOOL HOST MACROS------------------------------------------------------------------------------- __host__ void x15_whirlpool_cpu_init(int thr_id, uint32_t threads, int mode) { uint64_t* table0 = NULL; switch (mode) { case 0: /* x15 with rotated T1-T7 (based on T0) */ table0 = (uint64_t*)plain_T0; cudaMemcpyToSymbol(InitVector_RC, plain_RC, 10*sizeof(uint64_t),0, cudaMemcpyHostToDevice); cudaMemcpyToSymbol(precomputed_round_key_64, plain_precomputed_round_key_64, 72*sizeof(uint64_t),0, cudaMemcpyHostToDevice); break; case 1: /* old whirlpool */ table0 = (uint64_t*)old1_T0; cudaMemcpyToSymbol(InitVector_RC, old1_RC, 10*sizeof(uint64_t),0,cudaMemcpyHostToDevice); cudaMemcpyToSymbol(precomputed_round_key_64, old1_precomputed_round_key_64, 72*sizeof(uint64_t),0, cudaMemcpyHostToDevice); break; default: applog(LOG_ERR,"Bad whirlpool mode"); exit(0); } cudaMemcpyToSymbol(b0, table0, 256*sizeof(uint64_t),0, cudaMemcpyHostToDevice); uint64_t table7[256]; for(int i=0;i<256;i++){ table7[i] = ROTR64(table0[i],8); } cudaMemcpyToSymbol(b7, table7, 256*sizeof(uint64_t),0, cudaMemcpyHostToDevice); CUDA_SAFE_CALL(cudaMalloc(&d_resNonce[thr_id], 2 * sizeof(uint32_t))); cuda_get_arch(thr_id); } __host__ static void whirl_midstate(void *state, const void *input) { sph_whirlpool_context ctx; sph_whirlpool1_init(&ctx); sph_whirlpool1(&ctx, input, 64); memcpy(state, ctx.state, 64); } __host__ void whirlpool512_setBlock_80(void *pdata, const void *ptarget) { uint64_t PaddedMessage[16]; memcpy(PaddedMessage, pdata, 80); memset(((uint8_t*)&PaddedMessage)+80, 0, 48); ((uint8_t*)&PaddedMessage)[80] = 0x80; /* ending */ // compute constant first block uint64_t midstate[16] = { 0 }; whirl_midstate(midstate, pdata); memcpy(PaddedMessage, midstate, 64); uint64_t round_constants[80]; uint64_t n[8]; n[0] = PaddedMessage[0] ^ PaddedMessage[8]; //read data n[1] = PaddedMessage[1] ^ PaddedMessage[9]; n[2] = PaddedMessage[2] ^ 0x0000000000000080; //whirlpool n[3] = PaddedMessage[3]; n[4] = PaddedMessage[4]; n[5] = PaddedMessage[5]; n[6] = PaddedMessage[6]; n[7] = PaddedMessage[7] ^ 0x8002000000000000; ROUND_KSCHED(PaddedMessage,round_constants,old1_RC[0]); for(int i=1;i<10;i++){ ROUND_KSCHED(&round_constants[8*(i-1)],&round_constants[8*i],old1_RC[i]); } //USE the same memory place to store keys and state round_constants[ 0]^= old1_T0[BYTE(n[0], 0)] ^ table_skew(old1_T0[BYTE(n[7], 1)], 1) ^ table_skew(old1_T0[BYTE(n[6], 2)], 2) ^ table_skew(old1_T0[BYTE(n[5], 3)], 3) ^ table_skew(old1_T0[BYTE(n[4], 4)], 4) ^ table_skew(old1_T0[BYTE(n[3], 5)], 5) ^ table_skew(old1_T0[BYTE(n[2], 6)], 6); round_constants[ 1]^= old1_T0[BYTE(n[1], 0)] ^ table_skew(old1_T0[BYTE(n[0], 1)], 1) ^ table_skew(old1_T0[BYTE(n[7], 2)], 2) ^ table_skew(old1_T0[BYTE(n[6], 3)], 3) ^ table_skew(old1_T0[BYTE(n[5], 4)], 4) ^ table_skew(old1_T0[BYTE(n[4], 5)], 5) ^ table_skew(old1_T0[BYTE(n[3], 6)], 6) ^ table_skew(old1_T0[BYTE(n[2], 7)], 7); round_constants[ 2]^= old1_T0[BYTE(n[2], 0)] ^ table_skew(old1_T0[BYTE(n[1], 1)], 1) ^ table_skew(old1_T0[BYTE(n[0], 2)], 2) ^ table_skew(old1_T0[BYTE(n[7], 3)], 3) ^ table_skew(old1_T0[BYTE(n[6], 4)], 4) ^ table_skew(old1_T0[BYTE(n[5], 5)], 5) ^ table_skew(old1_T0[BYTE(n[4], 6)], 6) ^ table_skew(old1_T0[BYTE(n[3], 7)], 7); round_constants[ 3]^= old1_T0[BYTE(n[3], 0)] ^ table_skew(old1_T0[BYTE(n[2], 1)], 1) ^ table_skew(old1_T0[BYTE(n[1], 2)], 2) ^ table_skew(old1_T0[BYTE(n[0], 3)], 3) ^ table_skew(old1_T0[BYTE(n[7], 4)], 4) ^ table_skew(old1_T0[BYTE(n[6], 5)], 5) ^ table_skew(old1_T0[BYTE(n[5], 6)], 6) ^ table_skew(old1_T0[BYTE(n[4], 7)], 7); round_constants[ 4]^= old1_T0[BYTE(n[4], 0)] ^ table_skew(old1_T0[BYTE(n[3], 1)], 1) ^ table_skew(old1_T0[BYTE(n[2], 2)], 2) ^ table_skew(old1_T0[BYTE(n[1], 3)], 3) ^ table_skew(old1_T0[BYTE(n[0], 4)], 4) ^ table_skew(old1_T0[BYTE(n[7], 5)], 5) ^ table_skew(old1_T0[BYTE(n[6], 6)], 6) ^ table_skew(old1_T0[BYTE(n[5], 7)], 7); round_constants[ 5]^= old1_T0[BYTE(n[5], 0)] ^ table_skew(old1_T0[BYTE(n[4], 1)], 1) ^ table_skew(old1_T0[BYTE(n[3], 2)], 2) ^ table_skew(old1_T0[BYTE(n[2], 3)], 3) ^ table_skew(old1_T0[BYTE(n[0], 5)], 5) ^ table_skew(old1_T0[BYTE(n[7], 6)], 6) ^ table_skew(old1_T0[BYTE(n[6], 7)], 7); round_constants[ 6]^= old1_T0[BYTE(n[6], 0)] ^ table_skew(old1_T0[BYTE(n[5], 1)], 1) ^ table_skew(old1_T0[BYTE(n[4], 2)], 2) ^ table_skew(old1_T0[BYTE(n[3], 3)], 3) ^ table_skew(old1_T0[BYTE(n[2], 4)], 4) ^ table_skew(old1_T0[BYTE(n[0], 6)], 6) ^ table_skew(old1_T0[BYTE(n[7], 7)], 7); round_constants[ 7]^= old1_T0[BYTE(n[7], 0)] ^ table_skew(old1_T0[BYTE(n[6], 1)], 1) ^ table_skew(old1_T0[BYTE(n[5], 2)], 2) ^ table_skew(old1_T0[BYTE(n[4], 3)], 3) ^ table_skew(old1_T0[BYTE(n[3], 4)], 4) ^ table_skew(old1_T0[BYTE(n[2], 5)], 5) ^ table_skew(old1_T0[BYTE(n[0], 7)], 7); for(int i=1;i<5;i++) n[i] = round_constants[i]; round_constants[ 8]^= table_skew(old1_T0[BYTE(n[4], 4)], 4) ^ table_skew(old1_T0[BYTE(n[3], 5)], 5) ^ table_skew(old1_T0[BYTE(n[2], 6)], 6) ^ table_skew(old1_T0[BYTE(n[1], 7)], 7); round_constants[ 9]^= old1_T0[BYTE(n[1], 0)] ^ table_skew(old1_T0[BYTE(n[4], 5)], 5) ^ table_skew(old1_T0[BYTE(n[3], 6)], 6) ^ table_skew(old1_T0[BYTE(n[2], 7)], 7); round_constants[10]^= old1_T0[BYTE(n[2], 0)] ^ table_skew(old1_T0[BYTE(n[1], 1)], 1) ^ table_skew(old1_T0[BYTE(n[4], 6)], 6) ^ table_skew(old1_T0[BYTE(n[3], 7)], 7); round_constants[11]^= old1_T0[BYTE(n[3], 0)] ^ table_skew(old1_T0[BYTE(n[2], 1)], 1) ^ table_skew(old1_T0[BYTE(n[1], 2)], 2) ^ table_skew(old1_T0[BYTE(n[4], 7)], 7); round_constants[12]^= old1_T0[BYTE(n[4], 0)] ^ table_skew(old1_T0[BYTE(n[3], 1)], 1) ^ table_skew(old1_T0[BYTE(n[2], 2)], 2) ^ table_skew(old1_T0[BYTE(n[1], 3)], 3); round_constants[13]^= table_skew(old1_T0[BYTE(n[4], 1)], 1) ^ table_skew(old1_T0[BYTE(n[3], 2)], 2) ^ table_skew(old1_T0[BYTE(n[2], 3)], 3) ^ table_skew(old1_T0[BYTE(n[1], 4)], 4); round_constants[14]^= table_skew(old1_T0[BYTE(n[4], 2)], 2) ^ table_skew(old1_T0[BYTE(n[3], 3)], 3) ^ table_skew(old1_T0[BYTE(n[2], 4)], 4) ^ table_skew(old1_T0[BYTE(n[1], 5)], 5); round_constants[15]^= table_skew(old1_T0[BYTE(n[4], 3)], 3) ^ table_skew(old1_T0[BYTE(n[3], 4)], 4) ^ table_skew(old1_T0[BYTE(n[2], 5)], 5) ^ table_skew(old1_T0[BYTE(n[1], 6)], 6); PaddedMessage[0] ^= PaddedMessage[8]; cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 128, 0, cudaMemcpyHostToDevice); cudaMemcpyToSymbol(precomputed_round_key_80, round_constants, 80*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); } __host__ extern void x15_whirlpool_cpu_free(int thr_id) { cudaFree(InitVector_RC); cudaFree(b0); cudaFree(b7); cudaFree(d_resNonce[thr_id]); } __global__ __launch_bounds__(TPB80,2) void oldwhirlpool_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t* resNonce, const uint64_t target) { __shared__ uint2 sharedMemory[7][256]; if (threadIdx.x < 256) { const uint2 tmp = __ldg((uint2*)&b0[threadIdx.x]); sharedMemory[0][threadIdx.x] = tmp; sharedMemory[1][threadIdx.x] = ROL8(tmp); sharedMemory[2][threadIdx.x] = ROL16(tmp); sharedMemory[3][threadIdx.x] = ROL24(tmp); sharedMemory[4][threadIdx.x] = SWAPUINT2(tmp); sharedMemory[5][threadIdx.x] = ROR24(tmp); sharedMemory[6][threadIdx.x] = ROR16(tmp); } __syncthreads(); const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads){ uint2 hash[8], state[8],n[8], tmp[8]; uint32_t nonce = cuda_swab32(startNounce + thread); uint2 temp = c_PaddedMessage80[9]; temp.y = nonce; /// round 2 /////// ////////////////////////////////// temp = temp ^ c_PaddedMessage80[1]; *(uint2x4*)&n[ 0] = *(uint2x4*)&precomputed_round_key_80[ 0]; *(uint2x4*)&n[ 4] = *(uint2x4*)&precomputed_round_key_80[ 4]; *(uint2x4*)&tmp[ 0] = *(uint2x4*)&precomputed_round_key_80[ 8]; *(uint2x4*)&tmp[ 4] = *(uint2x4*)&precomputed_round_key_80[12]; n[ 0]^= __ldg((uint2*)&b7[__byte_perm(temp.y, 0, 0x4443)]); n[ 5]^= sharedMemory[4][__byte_perm(temp.y, 0, 0x4440)]; n[ 6]^= sharedMemory[5][__byte_perm(temp.y, 0, 0x4441)]; n[ 7]^= sharedMemory[6][__byte_perm(temp.y, 0, 0x4442)]; tmp[ 0]^= __ldg((uint2*)&b0[__byte_perm(n[0].x, 0, 0x4440)]); tmp[ 0]^= sharedMemory[1][__byte_perm(n[7].x, 0, 0x4441)]; tmp[ 0]^= sharedMemory[2][__byte_perm(n[6].x, 0, 0x4442)]; tmp[ 0]^= sharedMemory[3][__byte_perm(n[5].x, 0, 0x4443)]; tmp[ 1]^= sharedMemory[1][__byte_perm(n[0].x, 0, 0x4441)]; tmp[ 1]^= sharedMemory[2][__byte_perm(n[7].x, 0, 0x4442)]; tmp[ 1]^= sharedMemory[3][__byte_perm(n[6].x, 0, 0x4443)]; tmp[ 1]^= sharedMemory[4][__byte_perm(n[5].y, 0, 0x4440)]; tmp[ 2]^= sharedMemory[2][__byte_perm(n[0].x, 0, 0x4442)]; tmp[ 2]^= sharedMemory[3][__byte_perm(n[7].x, 0, 0x4443)]; tmp[ 2]^= sharedMemory[4][__byte_perm(n[6].y, 0, 0x4440)]; tmp[ 2]^= sharedMemory[5][__byte_perm(n[5].y, 0, 0x4441)]; tmp[ 3]^= sharedMemory[3][__byte_perm(n[0].x, 0, 0x4443)]; tmp[ 3]^= sharedMemory[4][__byte_perm(n[7].y, 0, 0x4440)]; tmp[ 3]^= ROR24(__ldg((uint2*)&b0[__byte_perm(n[6].y, 0, 0x4441)])); tmp[ 3]^= ROR8(__ldg((uint2*)&b7[__byte_perm(n[5].y, 0, 0x4442)])); tmp[ 4]^= sharedMemory[4][__byte_perm(n[0].y, 0, 0x4440)]; tmp[ 4]^= sharedMemory[5][__byte_perm(n[7].y, 0, 0x4441)]; tmp[ 4]^= ROR8(__ldg((uint2*)&b7[__byte_perm(n[6].y, 0, 0x4442)])); tmp[ 4]^= __ldg((uint2*)&b7[__byte_perm(n[5].y, 0, 0x4443)]); tmp[ 5]^= __ldg((uint2*)&b0[__byte_perm(n[5].x, 0, 0x4440)]); tmp[ 5]^= sharedMemory[5][__byte_perm(n[0].y, 0, 0x4441)]; tmp[ 5]^= sharedMemory[6][__byte_perm(n[7].y, 0, 0x4442)]; tmp[ 5]^= __ldg((uint2*)&b7[__byte_perm(n[6].y, 0, 0x4443)]); tmp[ 6]^= __ldg((uint2*)&b0[__byte_perm(n[6].x, 0, 0x4440)]); tmp[ 6]^= sharedMemory[1][__byte_perm(n[5].x, 0, 0x4441)]; tmp[ 6]^= sharedMemory[6][__byte_perm(n[0].y, 0, 0x4442)]; tmp[ 6]^= __ldg((uint2*)&b7[__byte_perm(n[7].y, 0, 0x4443)]); tmp[ 7]^= __ldg((uint2*)&b0[__byte_perm(n[7].x, 0, 0x4440)]); tmp[ 7]^= sharedMemory[1][__byte_perm(n[6].x, 0, 0x4441)]; tmp[ 7]^= sharedMemory[2][__byte_perm(n[5].x, 0, 0x4442)]; tmp[ 7]^= __ldg((uint2*)&b7[__byte_perm(n[0].y, 0, 0x4443)]); TRANSFER(n, tmp); for (int i=2; i<10; i++) { tmp[ 0] = d_ROUND_ELT1_LDG(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, precomputed_round_key_80[i*8+0]); tmp[ 1] = d_ROUND_ELT1( sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, precomputed_round_key_80[i*8+1]); tmp[ 2] = d_ROUND_ELT1( sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, precomputed_round_key_80[i*8+2]); tmp[ 3] = d_ROUND_ELT1_LDG(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, precomputed_round_key_80[i*8+3]); tmp[ 4] = d_ROUND_ELT1_LDG(sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, precomputed_round_key_80[i*8+4]); tmp[ 5] = d_ROUND_ELT1( sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, precomputed_round_key_80[i*8+5]); tmp[ 6] = d_ROUND_ELT1( sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, precomputed_round_key_80[i*8+6]); tmp[ 7] = d_ROUND_ELT1_LDG(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, precomputed_round_key_80[i*8+7]); TRANSFER(n, tmp); } state[0] = c_PaddedMessage80[0] ^ n[0]; state[1] = c_PaddedMessage80[1] ^ n[1] ^ vectorize(REPLACE_HIDWORD(devectorize(c_PaddedMessage80[9]),nonce)); state[2] = c_PaddedMessage80[2] ^ n[2] ^ vectorize(0x0000000000000080); state[3] = c_PaddedMessage80[3] ^ n[3]; state[4] = c_PaddedMessage80[4] ^ n[4]; state[5] = c_PaddedMessage80[5] ^ n[5]; state[6] = c_PaddedMessage80[6] ^ n[6]; state[7] = c_PaddedMessage80[7] ^ n[7] ^ vectorize(0x8002000000000000); #pragma unroll 2 for(int r=0;r<2;r++){ #pragma unroll 8 for(int i=0;i<8;i++) hash[ i] = n[ i] = state[ i]; uint2 h[8] = { {0xC0EE0B30,0x672990AF},{0x28282828,0x28282828},{0x28282828,0x28282828},{0x28282828,0x28282828}, {0x28282828,0x28282828},{0x28282828,0x28282828},{0x28282828,0x28282828},{0x28282828,0x28282828} }; tmp[ 0] = d_ROUND_ELT1_LDG(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, h[0]); tmp[ 1] = d_ROUND_ELT1(sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, h[1]); tmp[ 2] = d_ROUND_ELT1(sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, h[2]); tmp[ 3] = d_ROUND_ELT1_LDG(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, h[3]); tmp[ 4] = d_ROUND_ELT1(sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, h[4]); tmp[ 5] = d_ROUND_ELT1_LDG(sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, h[5]); tmp[ 6] = d_ROUND_ELT1(sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, h[6]); tmp[ 7] = d_ROUND_ELT1_LDG(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, h[7]); TRANSFER(n, tmp); // #pragma unroll 10 for (int i=1; i <10; i++){ tmp[ 0] = d_ROUND_ELT1_LDG(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, precomputed_round_key_64[(i-1)*8+0]); tmp[ 1] = d_ROUND_ELT1( sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, precomputed_round_key_64[(i-1)*8+1]); tmp[ 2] = d_ROUND_ELT1( sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, precomputed_round_key_64[(i-1)*8+2]); tmp[ 3] = d_ROUND_ELT1_LDG(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, precomputed_round_key_64[(i-1)*8+3]); tmp[ 4] = d_ROUND_ELT1( sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, precomputed_round_key_64[(i-1)*8+4]); tmp[ 5] = d_ROUND_ELT1( sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, precomputed_round_key_64[(i-1)*8+5]); tmp[ 6] = d_ROUND_ELT1( sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, precomputed_round_key_64[(i-1)*8+6]); tmp[ 7] = d_ROUND_ELT1_LDG(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, precomputed_round_key_64[(i-1)*8+7]); TRANSFER(n, tmp); } #pragma unroll 8 for (int i=0; i<8; i++) state[i] = n[i] ^ hash[i]; #pragma unroll 6 for (int i=1; i<7; i++) n[i]=vectorize(0); n[0] = vectorize(0x80); n[7] = vectorize(0x2000000000000); #pragma unroll 8 for (int i=0; i < 8; i++) { h[i] = state[i]; n[i] = n[i] ^ h[i]; } // #pragma unroll 10 for (int i=0; i < 10; i++) { tmp[ 0] = d_ROUND_ELT1(sharedMemory, h, 0, 7, 6, 5, 4, 3, 2, 1, InitVector_RC[i]); tmp[ 1] = d_ROUND_ELT(sharedMemory, h, 1, 0, 7, 6, 5, 4, 3, 2); tmp[ 2] = d_ROUND_ELT_LDG(sharedMemory, h, 2, 1, 0, 7, 6, 5, 4, 3); tmp[ 3] = d_ROUND_ELT(sharedMemory, h, 3, 2, 1, 0, 7, 6, 5, 4); tmp[ 4] = d_ROUND_ELT_LDG(sharedMemory, h, 4, 3, 2, 1, 0, 7, 6, 5); tmp[ 5] = d_ROUND_ELT(sharedMemory, h, 5, 4, 3, 2, 1, 0, 7, 6); tmp[ 6] = d_ROUND_ELT_LDG(sharedMemory, h, 6, 5, 4, 3, 2, 1, 0, 7); tmp[ 7] = d_ROUND_ELT(sharedMemory, h, 7, 6, 5, 4, 3, 2, 1, 0); TRANSFER(h, tmp); tmp[ 0] = d_ROUND_ELT1(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, tmp[0]); tmp[ 1] = d_ROUND_ELT1(sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, tmp[1]); tmp[ 2] = d_ROUND_ELT1_LDG(sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, tmp[2]); tmp[ 3] = d_ROUND_ELT1(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, tmp[3]); tmp[ 4] = d_ROUND_ELT1(sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, tmp[4]); tmp[ 5] = d_ROUND_ELT1(sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, tmp[5]); tmp[ 6] = d_ROUND_ELT1(sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, tmp[6]); tmp[ 7] = d_ROUND_ELT1_LDG(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, tmp[7]); TRANSFER(n, tmp); } state[0] = xor3x(state[0], n[0], vectorize(0x80)); state[1] = state[1]^ n[1]; state[2] = state[2]^ n[2]; state[3] = state[3]^ n[3]; state[4] = state[4]^ n[4]; state[5] = state[5]^ n[5]; state[6] = state[6]^ n[6]; state[7] = xor3x(state[7], n[7], vectorize(0x2000000000000)); } uint2 h[8] = { {0xC0EE0B30,0x672990AF},{0x28282828,0x28282828},{0x28282828,0x28282828},{0x28282828,0x28282828}, {0x28282828,0x28282828},{0x28282828,0x28282828},{0x28282828,0x28282828},{0x28282828,0x28282828} }; #pragma unroll 8 for(int i=0;i<8;i++) n[i]=hash[i] = state[ i]; tmp[ 0] = d_ROUND_ELT1(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, h[0]); tmp[ 1] = d_ROUND_ELT1_LDG(sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, h[1]); tmp[ 2] = d_ROUND_ELT1(sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, h[2]); tmp[ 3] = d_ROUND_ELT1_LDG(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, h[3]); tmp[ 4] = d_ROUND_ELT1(sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, h[4]); tmp[ 5] = d_ROUND_ELT1_LDG(sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, h[5]); tmp[ 6] = d_ROUND_ELT1(sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, h[6]); tmp[ 7] = d_ROUND_ELT1_LDG(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, h[7]); TRANSFER(n, tmp); // #pragma unroll 10 for (int i=1; i <10; i++){ tmp[ 0] = d_ROUND_ELT1_LDG(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, precomputed_round_key_64[(i-1)*8+0]); tmp[ 1] = d_ROUND_ELT1( sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, precomputed_round_key_64[(i-1)*8+1]); tmp[ 2] = d_ROUND_ELT1( sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, precomputed_round_key_64[(i-1)*8+2]); tmp[ 3] = d_ROUND_ELT1_LDG(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, precomputed_round_key_64[(i-1)*8+3]); tmp[ 4] = d_ROUND_ELT1( sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, precomputed_round_key_64[(i-1)*8+4]); tmp[ 5] = d_ROUND_ELT1( sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, precomputed_round_key_64[(i-1)*8+5]); tmp[ 6] = d_ROUND_ELT1( sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, precomputed_round_key_64[(i-1)*8+6]); tmp[ 7] = d_ROUND_ELT1_LDG(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, precomputed_round_key_64[(i-1)*8+7]); TRANSFER(n, tmp); } #pragma unroll 8 for (int i=0; i<8; i++) n[ i] = h[i] = n[i] ^ hash[i]; uint2 backup = h[ 3]; n[0]^= vectorize(0x80); n[7]^= vectorize(0x2000000000000); // #pragma unroll 8 for (int i=0; i < 8; i++) { tmp[ 0] = d_ROUND_ELT1(sharedMemory, h, 0, 7, 6, 5, 4, 3, 2, 1, InitVector_RC[i]); tmp[ 1] = d_ROUND_ELT(sharedMemory, h, 1, 0, 7, 6, 5, 4, 3, 2); tmp[ 2] = d_ROUND_ELT_LDG(sharedMemory, h, 2, 1, 0, 7, 6, 5, 4, 3); tmp[ 3] = d_ROUND_ELT(sharedMemory, h, 3, 2, 1, 0, 7, 6, 5, 4); tmp[ 4] = d_ROUND_ELT_LDG(sharedMemory, h, 4, 3, 2, 1, 0, 7, 6, 5); tmp[ 5] = d_ROUND_ELT(sharedMemory, h, 5, 4, 3, 2, 1, 0, 7, 6); tmp[ 6] = d_ROUND_ELT_LDG(sharedMemory, h, 6, 5, 4, 3, 2, 1, 0, 7); tmp[ 7] = d_ROUND_ELT(sharedMemory, h, 7, 6, 5, 4, 3, 2, 1, 0); TRANSFER(h, tmp); tmp[ 0] = d_ROUND_ELT1(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, tmp[0]); tmp[ 1] = d_ROUND_ELT1(sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, tmp[1]); tmp[ 2] = d_ROUND_ELT1_LDG(sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, tmp[2]); tmp[ 3] = d_ROUND_ELT1(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, tmp[3]); tmp[ 4] = d_ROUND_ELT1(sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, tmp[4]); tmp[ 5] = d_ROUND_ELT1(sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, tmp[5]); tmp[ 6] = d_ROUND_ELT1(sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, tmp[6]); tmp[ 7] = d_ROUND_ELT1_LDG(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, tmp[7]); TRANSFER(n, tmp); } tmp[ 0] = d_ROUND_ELT1(sharedMemory, h, 0, 7, 6, 5, 4, 3, 2, 1, InitVector_RC[8]); tmp[ 1] = d_ROUND_ELT(sharedMemory, h, 1, 0, 7, 6, 5, 4, 3, 2); tmp[ 2] = d_ROUND_ELT_LDG(sharedMemory, h, 2, 1, 0, 7, 6, 5, 4, 3); tmp[ 3] = d_ROUND_ELT(sharedMemory, h, 3, 2, 1, 0, 7, 6, 5, 4); tmp[ 4] = d_ROUND_ELT_LDG(sharedMemory, h, 4, 3, 2, 1, 0, 7, 6, 5); tmp[ 5] = d_ROUND_ELT(sharedMemory, h, 5, 4, 3, 2, 1, 0, 7, 6); tmp[ 6] = d_ROUND_ELT(sharedMemory, h, 6, 5, 4, 3, 2, 1, 0, 7); tmp[ 7] = d_ROUND_ELT(sharedMemory, h, 7, 6, 5, 4, 3, 2, 1, 0); TRANSFER(h, tmp); tmp[ 0] = d_ROUND_ELT1(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, tmp[0]); tmp[ 1] = d_ROUND_ELT1(sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, tmp[1]); tmp[ 2] = d_ROUND_ELT1(sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, tmp[2]); tmp[ 3] = d_ROUND_ELT1(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, tmp[3]); tmp[ 4] = d_ROUND_ELT1(sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, tmp[4]); tmp[ 5] = d_ROUND_ELT1(sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, tmp[5]); tmp[ 6] = d_ROUND_ELT1_LDG(sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, tmp[6]); tmp[ 7] = d_ROUND_ELT1(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, tmp[7]); n[ 3] = backup ^ d_ROUND_ELT(sharedMemory, h, 3, 2, 1, 0, 7, 6, 5, 4) ^ d_ROUND_ELT(sharedMemory,tmp, 3, 2, 1, 0, 7, 6, 5, 4); if(devectorize(n[3]) <= target) { uint32_t tmp = atomicExch(&resNonce[0], thread); if (tmp != UINT32_MAX) resNonce[1] = tmp; } } // thread < threads } /* only for whirlpool algo, no data out!! */ __host__ void whirlpool512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *h_resNonces, const uint64_t target) { dim3 grid((threads + TPB80-1) / TPB80); dim3 block(TPB80); cudaMemset(d_resNonce[thr_id], 0xff, 2*sizeof(uint32_t)); oldwhirlpool_gpu_hash_80<<>>(threads, startNounce, d_resNonce[thr_id], target); cudaMemcpy(h_resNonces, d_resNonce[thr_id], 2*sizeof(uint32_t), cudaMemcpyDeviceToHost); if (h_resNonces[0] != UINT32_MAX) h_resNonces[0] += startNounce; if (h_resNonces[1] != UINT32_MAX) h_resNonces[1] += startNounce; } __global__ __launch_bounds__(TPB64,2) void x15_whirlpool_gpu_hash_64(uint32_t threads, uint64_t *g_hash) { __shared__ uint2 sharedMemory[7][256]; if (threadIdx.x < 256) { const uint2 tmp = __ldg((uint2*)&b0[threadIdx.x]); sharedMemory[0][threadIdx.x] = tmp; sharedMemory[1][threadIdx.x] = ROL8(tmp); sharedMemory[2][threadIdx.x] = ROL16(tmp); sharedMemory[3][threadIdx.x] = ROL24(tmp); sharedMemory[4][threadIdx.x] = SWAPUINT2(tmp); sharedMemory[5][threadIdx.x] = ROR24(tmp); sharedMemory[6][threadIdx.x] = ROR16(tmp); } const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads){ uint2 hash[8], n[8], h[ 8]; uint2 tmp[8] = { {0xC0EE0B30,0x672990AF},{0x28282828,0x28282828},{0x28282828,0x28282828},{0x28282828,0x28282828}, {0x28282828,0x28282828},{0x28282828,0x28282828},{0x28282828,0x28282828},{0x28282828,0x28282828} }; *(uint2x4*)&hash[ 0] = __ldg4((uint2x4*)&g_hash[(thread<<3) + 0]); *(uint2x4*)&hash[ 4] = __ldg4((uint2x4*)&g_hash[(thread<<3) + 4]); __syncthreads(); #pragma unroll 8 for(int i=0;i<8;i++) n[i]=hash[i]; tmp[ 0]^= d_ROUND_ELT(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1); tmp[ 1]^= d_ROUND_ELT_LDG(sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2); tmp[ 2]^= d_ROUND_ELT(sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3); tmp[ 3]^= d_ROUND_ELT_LDG(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4); tmp[ 4]^= d_ROUND_ELT(sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5); tmp[ 5]^= d_ROUND_ELT_LDG(sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6); tmp[ 6]^= d_ROUND_ELT(sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7); tmp[ 7]^= d_ROUND_ELT_LDG(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0); for (int i=1; i <10; i++){ TRANSFER(n, tmp); tmp[ 0] = d_ROUND_ELT1_LDG(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, precomputed_round_key_64[(i-1)*8+0]); tmp[ 1] = d_ROUND_ELT1( sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, precomputed_round_key_64[(i-1)*8+1]); tmp[ 2] = d_ROUND_ELT1( sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, precomputed_round_key_64[(i-1)*8+2]); tmp[ 3] = d_ROUND_ELT1_LDG(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, precomputed_round_key_64[(i-1)*8+3]); tmp[ 4] = d_ROUND_ELT1( sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, precomputed_round_key_64[(i-1)*8+4]); tmp[ 5] = d_ROUND_ELT1( sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, precomputed_round_key_64[(i-1)*8+5]); tmp[ 6] = d_ROUND_ELT1( sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, precomputed_round_key_64[(i-1)*8+6]); tmp[ 7] = d_ROUND_ELT1_LDG(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, precomputed_round_key_64[(i-1)*8+7]); } TRANSFER(h, tmp); #pragma unroll 8 for (int i=0; i<8; i++) hash[ i] = h[i] = h[i] ^ hash[i]; #pragma unroll 6 for (int i=1; i<7; i++) n[i]=vectorize(0); n[0] = vectorize(0x80); n[7] = vectorize(0x2000000000000); #pragma unroll 8 for (int i=0; i < 8; i++) { n[i] = n[i] ^ h[i]; } // #pragma unroll 10 for (int i=0; i < 10; i++) { tmp[ 0] = InitVector_RC[i]; tmp[ 0]^= d_ROUND_ELT(sharedMemory, h, 0, 7, 6, 5, 4, 3, 2, 1); tmp[ 1] = d_ROUND_ELT(sharedMemory, h, 1, 0, 7, 6, 5, 4, 3, 2); tmp[ 2] = d_ROUND_ELT_LDG(sharedMemory, h, 2, 1, 0, 7, 6, 5, 4, 3); tmp[ 3] = d_ROUND_ELT(sharedMemory, h, 3, 2, 1, 0, 7, 6, 5, 4); tmp[ 4] = d_ROUND_ELT_LDG(sharedMemory, h, 4, 3, 2, 1, 0, 7, 6, 5); tmp[ 5] = d_ROUND_ELT(sharedMemory, h, 5, 4, 3, 2, 1, 0, 7, 6); tmp[ 6] = d_ROUND_ELT(sharedMemory, h, 6, 5, 4, 3, 2, 1, 0, 7); tmp[ 7] = d_ROUND_ELT(sharedMemory, h, 7, 6, 5, 4, 3, 2, 1, 0); TRANSFER(h, tmp); tmp[ 0] = d_ROUND_ELT1(sharedMemory,n, 0, 7, 6, 5, 4, 3, 2, 1, tmp[0]); tmp[ 1] = d_ROUND_ELT1_LDG(sharedMemory,n, 1, 0, 7, 6, 5, 4, 3, 2, tmp[1]); tmp[ 2] = d_ROUND_ELT1(sharedMemory,n, 2, 1, 0, 7, 6, 5, 4, 3, tmp[2]); tmp[ 3] = d_ROUND_ELT1(sharedMemory,n, 3, 2, 1, 0, 7, 6, 5, 4, tmp[3]); tmp[ 4] = d_ROUND_ELT1_LDG(sharedMemory,n, 4, 3, 2, 1, 0, 7, 6, 5, tmp[4]); tmp[ 5] = d_ROUND_ELT1(sharedMemory,n, 5, 4, 3, 2, 1, 0, 7, 6, tmp[5]); tmp[ 6] = d_ROUND_ELT1_LDG(sharedMemory,n, 6, 5, 4, 3, 2, 1, 0, 7, tmp[6]); tmp[ 7] = d_ROUND_ELT1(sharedMemory,n, 7, 6, 5, 4, 3, 2, 1, 0, tmp[7]); TRANSFER(n, tmp); } hash[0] = xor3x(hash[0], n[0], vectorize(0x80)); hash[1] = hash[1]^ n[1]; hash[2] = hash[2]^ n[2]; hash[3] = hash[3]^ n[3]; hash[4] = hash[4]^ n[4]; hash[5] = hash[5]^ n[5]; hash[6] = hash[6]^ n[6]; hash[7] = xor3x(hash[7], n[7], vectorize(0x2000000000000)); *(uint2x4*)&g_hash[(thread<<3)+ 0] = *(uint2x4*)&hash[ 0]; *(uint2x4*)&g_hash[(thread<<3)+ 4] = *(uint2x4*)&hash[ 4]; } } __host__ static void x15_whirlpool_cpu_hash_64(int thr_id, uint32_t threads, uint32_t *d_hash) { dim3 grid((threads + TPB64-1) / TPB64); dim3 block(TPB64); x15_whirlpool_gpu_hash_64 <<>> (threads, (uint64_t*)d_hash); } __host__ void x15_whirlpool_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) { x15_whirlpool_cpu_hash_64(thr_id, threads, d_hash); }