/* Ziftrcoin ZR5 CUDA Implementation, (c) tpruvot 2015 */ extern "C" { #include "sph/sph_blake.h" #include "sph/sph_groestl.h" #include "sph/sph_skein.h" #include "sph/sph_jh.h" #include "sph/sph_keccak.h" } #include "miner.h" #include "cuda_helper.h" #include #include #define ZR_BLAKE 0 #define ZR_GROESTL 1 #define ZR_JH512 2 #define ZR_SKEIN 3 #define POK_BOOL_MASK 0x00008000 #define POK_DATA_MASK 0xFFFF0000 static uint32_t* d_hash[MAX_GPUS]; static uint16_t* d_poks[MAX_GPUS]; static uint32_t**d_buffers[MAX_GPUS]; static uint8_t* d_permut[MAX_GPUS]; static uint32_t* d_blake[MAX_GPUS]; static uint32_t* d_groes[MAX_GPUS]; static uint32_t* d_jh512[MAX_GPUS]; static uint32_t* d_skein[MAX_GPUS]; static uint8_t* d_txs[MAX_GPUS]; __constant__ uint16_t c_txlens[POK_MAX_TXS]; __constant__ uint8_t c_permut[24][4]; static const uint8_t permut[24][4] = { {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 2, 1, 3}, {0, 2, 3, 1}, {0, 3, 1, 2}, {0, 3, 2, 1}, {1, 0, 2, 3}, {1, 0, 3, 2}, {1, 2, 0, 3}, {1, 2, 3, 0}, {1, 3, 0, 2}, {1, 3, 2, 0}, {2, 0, 1, 3}, {2, 0, 3, 1}, {2, 1, 0, 3}, {2, 1, 3, 0}, {2, 3, 0, 1}, {2, 3, 1, 0}, {3, 0, 1, 2}, {3, 0, 2, 1}, {3, 1, 0, 2}, {3, 1, 2, 0}, {3, 2, 0, 1}, {3, 2, 1, 0} }; // CPU HASH extern "C" void zr5hash(void *output, const void *input) { sph_keccak512_context ctx_keccak; sph_blake512_context ctx_blake; sph_groestl512_context ctx_groestl; sph_jh512_context ctx_jh; sph_skein512_context ctx_skein; uchar _ALIGN(64) hash[64]; uint32_t *phash = (uint32_t *) hash; uint32_t norder; sph_keccak512_init(&ctx_keccak); sph_keccak512(&ctx_keccak, (const void*) input, 80); sph_keccak512_close(&ctx_keccak, (void*) phash); norder = phash[0] % ARRAY_SIZE(permut); /* % 24 */ for(int i = 0; i < 4; i++) { switch (permut[norder][i]) { case ZR_BLAKE: sph_blake512_init(&ctx_blake); sph_blake512(&ctx_blake, (const void*) phash, 64); sph_blake512_close(&ctx_blake, phash); break; case ZR_GROESTL: sph_groestl512_init(&ctx_groestl); sph_groestl512(&ctx_groestl, (const void*) phash, 64); sph_groestl512_close(&ctx_groestl, phash); break; case ZR_JH512: sph_jh512_init(&ctx_jh); sph_jh512(&ctx_jh, (const void*) phash, 64); sph_jh512_close(&ctx_jh, phash); break; case ZR_SKEIN: sph_skein512_init(&ctx_skein); sph_skein512(&ctx_skein, (const void*) phash, 64); sph_skein512_close(&ctx_skein, phash); break; default: break; } } memcpy(output, phash, 32); } extern "C" void zr5hash_pok(void *output, uint32_t *pdata) { uint32_t _ALIGN(64) hash[8]; const uint32_t version = (pdata[0] & (~POK_DATA_MASK)) | (use_pok ? POK_BOOL_MASK : 0); pdata[0] = version; zr5hash(hash, pdata); // fill PoK pdata[0] = version | (hash[0] & POK_DATA_MASK); zr5hash(hash, pdata); memcpy(output, hash, 32); } // ------------------------------------------------------------------------------------------------ __global__ __launch_bounds__(128, 8) void zr5_init_vars_gpu(uint32_t threads, uint32_t* d_hash, uint8_t* d_permut, uint32_t** d_buffers, uint32_t* d_blake, uint32_t* d_groes, uint32_t* d_jh512, uint32_t* d_skein) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t offset = thread * 16U; // 64U / sizeof(uint32_t); uint32_t *phash = &d_hash[offset]; // store the algos order for other procs const uint8_t norder = (phash[0] % ARRAY_SIZE(permut)); const uint8_t algo = c_permut[norder][0]; d_permut[thread] = norder; // init array for other procs d_buffers[0] = d_blake; d_buffers[1] = d_groes; d_buffers[2] = d_jh512; d_buffers[3] = d_skein; // Copy From d_hash to the first algo buffer // uint4 = 4x uint32_t = 16 bytes uint4 *psrc = (uint4*) phash; uint4 *pdst = (uint4*) (d_buffers[algo] + offset); pdst[0] = psrc[0]; pdst[1] = psrc[1]; pdst[2] = psrc[2]; pdst[3] = psrc[3]; } } __host__ void zr5_init_vars(int thr_id, uint32_t threads) { const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); zr5_init_vars_gpu <<>> ( threads, d_hash[thr_id], d_permut[thr_id], d_buffers[thr_id], d_blake[thr_id], d_groes[thr_id], d_jh512[thr_id], d_skein[thr_id] ); } __global__ __launch_bounds__(128, 8) void zr5_move_data_to_hash_gpu(const uint32_t threads, const int rnd, uint32_t** const d_buffers, uint8_t *d_permut, uint32_t *d_hash) { // copy 64 bytes hash from/to the right algo buffers const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint8_t norder = d_permut[thread]; const uint8_t algodst = c_permut[norder][rnd]; const uint8_t algosrc = c_permut[norder][rnd-1]; const uint32_t offset = thread * (64 / 4); // uint4 = 4x uint32_t = 16 bytes uint4 *psrc = (uint4*) (d_buffers[algosrc] + offset); uint4 *pdst = (uint4*) (d_buffers[algodst] + offset); pdst[0] = psrc[0]; pdst[1] = psrc[1]; pdst[2] = psrc[2]; pdst[3] = psrc[3]; } } __host__ void zr5_move_data_to_hash(int thr_id, uint32_t threads, int rnd) { const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); zr5_move_data_to_hash_gpu <<>> (threads, rnd, d_buffers[thr_id], d_permut[thr_id], d_hash[thr_id]); } __global__ __launch_bounds__(128, 8) void zr5_get_poks_gpu(uint32_t threads, uint32_t** const d_buffers, uint8_t* const d_permut, uint16_t *d_poks) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint8_t norder = d_permut[thread]; const uint8_t algosrc = c_permut[norder][3]; // copy only pok const uint32_t offset = thread * 16U; // 64 / 4; uint16_t* hash0 = (uint16_t*) (d_buffers[algosrc] + offset); d_poks[thread] = hash0[1]; } } __global__ __launch_bounds__(128, 4) void zr5_get_poks_xor_gpu(uint32_t threads, uint32_t** const d_buffers, uint8_t* d_permut, uint16_t* d_poks, uint8_t* d_txs, uint8_t txs) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint8_t norder = d_permut[thread]; const uint8_t algo = c_permut[norder][3]; const uint8_t ntx = norder % txs; // generally 0 on testnet... const uint32_t offset = thread * 16U; // 64 / 4; uint32_t* hash = (uint32_t*) (d_buffers[algo] + offset); uint32_t randNdx = hash[1] % c_txlens[ntx]; uint8_t* ptx = &d_txs[POK_MAX_TX_SZ*ntx] + randNdx; uint32_t x = 0x100UL * ptx[3] + ptx[2]; d_poks[thread] = x ^ (hash[2] >> 16); } } __host__ void zr5_get_poks(int thr_id, uint32_t threads, uint16_t* d_poks, struct work* work) { const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); uint8_t txs = (uint8_t) work->tx_count; if (txs && use_pok) { uint32_t txlens[POK_MAX_TXS]; uint8_t* txdata = (uint8_t*) calloc(POK_MAX_TXS, POK_MAX_TX_SZ); if (!txdata) { applog(LOG_ERR, "%s: error, memory alloc failure", __func__); return; } // create blocs to copy on device for (uint8_t tx=0; tx < txs; tx++) { txlens[tx] = (uint32_t) (work->txs[tx].len - 3U); memcpy(&txdata[POK_MAX_TX_SZ*tx], work->txs[tx].data, min(POK_MAX_TX_SZ, txlens[tx]+3U)); } cudaMemcpy(d_txs[thr_id], txdata, txs * POK_MAX_TX_SZ, cudaMemcpyHostToDevice); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_txlens, txlens, txs * sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); zr5_get_poks_xor_gpu <<>> (threads, d_buffers[thr_id], d_permut[thr_id], d_poks, d_txs[thr_id], txs); free(txdata); } else { zr5_get_poks_gpu <<>> (threads, d_buffers[thr_id], d_permut[thr_id], d_poks); } } __global__ __launch_bounds__(128, 8) void zr5_final_round_data_gpu(uint32_t threads, uint32_t** const d_buffers, uint8_t* const d_permut, uint32_t *d_hash, uint16_t *d_poks) { // after the 4 algos rounds, copy back hash to d_hash const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint8_t norder = d_permut[thread]; const uint8_t algosrc = c_permut[norder][3]; const uint32_t offset = thread * 16U; // 64 / 4; // copy only hash[4..7] uint2 *psrc = (uint2*) (d_buffers[algosrc] + offset); uint2 *phash = (uint2*) (&d_hash[offset]); phash[2] = psrc[2]; phash[3] = psrc[3]; } } __host__ void zr5_final_round(int thr_id, uint32_t threads) { const uint32_t threadsperblock = 128; dim3 grid((threads + threadsperblock - 1) / threadsperblock); dim3 block(threadsperblock); zr5_final_round_data_gpu <<>> (threads, d_buffers[thr_id], d_permut[thr_id], d_hash[thr_id], d_poks[thr_id]); } extern void jackpot_keccak512_cpu_init(int thr_id, uint32_t threads); extern void jackpot_keccak512_cpu_setBlock(void *pdata, size_t inlen); extern void zr5_keccak512_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash); extern void zr5_keccak512_cpu_hash_pok(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t* pdata, uint32_t *d_hash, uint16_t *d_poks); extern void quark_blake512_cpu_init(int thr_id, uint32_t threads); extern void quark_blake512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); extern void quark_blake512_cpu_free(int thr_id); extern void quark_groestl512_cpu_init(int thr_id, uint32_t threads); extern void quark_groestl512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); extern void quark_groestl512_cpu_free(int thr_id); extern void quark_jh512_cpu_init(int thr_id, uint32_t threads); extern void quark_jh512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); extern void quark_skein512_cpu_init(int thr_id, uint32_t threads); extern void quark_skein512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_zr5(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) tmpdata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t oldp0 = pdata[0]; const uint32_t version = (oldp0 & (~POK_DATA_MASK)) | (use_pok ? POK_BOOL_MASK : 0); const uint32_t first_nonce = pdata[19]; uint32_t throughput = cuda_default_throughput(thr_id, 1U << 18); throughput = min(throughput, (1U << 20)-1024); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ptarget[7] = 0x0000ff; memcpy(tmpdata, pdata, 80); if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); // constants cudaMemcpyToSymbol(c_permut, permut, 24*4, 0, cudaMemcpyHostToDevice); // hash buffer = keccak hash 64 required cudaMalloc(&d_hash[thr_id], 64 * throughput); cudaMalloc(&d_poks[thr_id], sizeof(uint16_t) * throughput); cudaMalloc(&d_permut[thr_id], sizeof(uint8_t) * throughput); cudaMalloc(&d_buffers[thr_id], 4 * sizeof(uint32_t*)); // data buffers for the 4 rounds cudaMalloc(&d_blake[thr_id], 64 * throughput); cudaMalloc(&d_groes[thr_id], 64 * throughput); cudaMalloc(&d_jh512[thr_id], 64 * throughput); cudaMalloc(&d_skein[thr_id], 64 * throughput); cudaMalloc(&d_txs[thr_id], POK_MAX_TXS * POK_MAX_TX_SZ); jackpot_keccak512_cpu_init(thr_id, throughput); quark_blake512_cpu_init(thr_id, throughput); quark_groestl512_cpu_init(thr_id, throughput); quark_jh512_cpu_init(thr_id, throughput); quark_skein512_cpu_init(thr_id, throughput); cuda_check_cpu_init(thr_id, throughput); CUDA_SAFE_CALL(cudaDeviceSynchronize()); init[thr_id] = true; } tmpdata[0] = version; jackpot_keccak512_cpu_setBlock((void*)tmpdata, 80); cuda_check_cpu_setTarget(ptarget); do { int order = 0; // Keccak512 Hash with CUDA zr5_keccak512_cpu_hash(thr_id, throughput, pdata[19], d_hash[thr_id]); zr5_init_vars(thr_id, throughput); for (int rnd=0; rnd<4; rnd++) { if (rnd > 0) zr5_move_data_to_hash(thr_id, throughput, rnd); quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_blake[thr_id], order++); quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_groes[thr_id], order++); quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_jh512[thr_id], order++); quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_skein[thr_id], order++); } // store on device d_poks all hash[0] prefixes zr5_get_poks(thr_id, throughput, d_poks[thr_id], work); // Keccak512 with pok zr5_keccak512_cpu_hash_pok(thr_id, throughput, pdata[19], pdata, d_hash[thr_id], d_poks[thr_id]); zr5_init_vars(thr_id, throughput); for (int rnd=0; rnd<4; rnd++) { if (rnd > 0) zr5_move_data_to_hash(thr_id, throughput, rnd); quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_blake[thr_id], order++); quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_groes[thr_id], order++); quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_jh512[thr_id], order++); quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_skein[thr_id], order++); } zr5_final_round(thr_id, throughput); // do not scan results on interuption if (work_restart[thr_id].restart) return -1; work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]); if (work->nonces[0] != UINT32_MAX) { uint32_t _ALIGN(64) vhash[8]; uint32_t oldp19 = pdata[19]; uint32_t offset = work->nonces[0] - pdata[19]; uint32_t pok = 0; uint16_t h_pok; *hashes_done = pdata[19] - first_nonce + throughput; cudaMemcpy(&h_pok, d_poks[thr_id] + offset, sizeof(uint16_t), cudaMemcpyDeviceToHost); pok = version | (0x10000UL * h_pok); pdata[0] = pok; pdata[19] = work->nonces[0]; zr5hash(vhash, pdata); if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhash); work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, oldp19, d_hash[thr_id], 1); if (work->nonces[1] != 0) { offset = work->nonces[1] - oldp19; cudaMemcpy(&h_pok, d_poks[thr_id] + offset, sizeof(uint16_t), cudaMemcpyDeviceToHost); pok = version | (0x10000UL * h_pok); memcpy(tmpdata, pdata, 80); tmpdata[0] = pok; tmpdata[19] = work->nonces[1]; zr5hash(vhash, tmpdata); if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { bn_set_target_ratio(work, vhash, 1); pdata[19] = max(pdata[19], work->nonces[1]); // cursor pdata[20] = pok; // second nonce "pok" work->valid_nonces++; } pdata[19]++; } return work->valid_nonces; } else if (vhash[7] > ptarget[7]) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); pdata[0] = oldp0; } } else pdata[19] += throughput; } while (pdata[19] < max_nonce && !work_restart[thr_id].restart); pdata[0] = oldp0; *hashes_done = pdata[19] - first_nonce + 1; return 0; } // cleanup extern "C" void free_zr5(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_hash[thr_id]); cudaFree(d_poks[thr_id]); cudaFree(d_permut[thr_id]); cudaFree(d_buffers[thr_id]); cudaFree(d_blake[thr_id]); cudaFree(d_groes[thr_id]); cudaFree(d_jh512[thr_id]); cudaFree(d_skein[thr_id]); cudaFree(d_txs[thr_id]); quark_blake512_cpu_free(thr_id); quark_groestl512_cpu_free(thr_id); cuda_check_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }