/** * SKEIN512 80 + SHA256 64 * by tpruvot@github - 2015 */ #include "sph/sph_skein.h" #include "miner.h" #include "cuda_helper.h" #include static uint32_t *d_hash[MAX_GPUS]; static __thread bool sm5 = true; extern void quark_skein512_cpu_init(int thr_id, uint32_t threads); extern void skein512_cpu_setBlock_80(void *pdata); extern void skein512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int swap); extern void skeincoin_init(int thr_id); extern void skeincoin_free(int thr_id); extern void skeincoin_setBlock_80(int thr_id, void *pdata); extern uint32_t skeincoin_hash_sm5(int thr_id, uint32_t threads, uint32_t startNounce, int swap, uint64_t target64, uint32_t *secNonce); static __device__ uint32_t sha256_hashTable[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static __device__ __constant__ uint32_t sha256_constantTable[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; static __device__ __constant__ uint32_t sha256_endingTable[] = { 0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200, 0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020, 0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549, 0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91, 0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7, 0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d, 0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484 }; /* Elementary functions used by SHA256 */ #define SWAB32(x) cuda_swab32(x) //#define ROTR32(x,n) SPH_ROTR32(x,n) #define R(x, n) ((x) >> (n)) #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22)) #define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25)) #define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3)) #define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10)) #define ADVANCED_SHA2 #ifndef ADVANCED_SHA2 /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ do { \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; \ } while (0) /* Adjusted round function for rotating state */ #define RNDr(S, W, i) \ RND(S[(64 - i) & 7], S[(65 - i) & 7], \ S[(66 - i) & 7], S[(67 - i) & 7], \ S[(68 - i) & 7], S[(69 - i) & 7], \ S[(70 - i) & 7], S[(71 - i) & 7], \ W[i] + sha256_constantTable[i]) static __constant__ uint32_t sha256_ending[16] = { 0x80000000UL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x200UL }; __device__ void sha256_transform_gpu(uint32_t *state, uint32_t *message) { uint32_t S[8]; uint32_t W[64]; uint32_t t0, t1; /* Initialize work variables. */ for (int i = 0; i < 8; i++) { S[i] = state[i]; } for (int i = 0; i < 16; i++) { W[i] = message[i]; } for (int i = 16; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i + 1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } /* 3. Mix. */ #pragma unroll for (int i = 0; i < 64; i++) { RNDr(S, W, i); } for (int i = 0; i < 8; i++) state[i] += S[i]; } #endif #ifdef ADVANCED_SHA2 __device__ void skeincoin_gpu_sha256(uint32_t *message) { uint32_t W1[16]; uint32_t W2[16]; uint32_t regs[8]; uint32_t hash[8]; // Init with Hash-Table #pragma unroll 8 for (int k=0; k < 8; k++) { hash[k] = regs[k] = sha256_hashTable[k]; } #pragma unroll 16 for (int k = 0; k<16; k++) W1[k] = SWAB32(message[k]); // Progress W1 #pragma unroll 16 for (int j = 0; j<16; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j] + W1[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int k = 6; k >= 0; k--) regs[k + 1] = regs[k]; regs[0] = T1 + T2; regs[4] += T1; } // Progress W2...W3 ////// PART 1 #pragma unroll 2 for (int j = 0; j<2; j++) W2[j] = s1(W1[14 + j]) + W1[9 + j] + s0(W1[1 + j]) + W1[j]; #pragma unroll 5 for (int j = 2; j<7; j++) W2[j] = s1(W2[j - 2]) + W1[9 + j] + s0(W1[1 + j]) + W1[j]; #pragma unroll 8 for (int j = 7; j<15; j++) W2[j] = s1(W2[j - 2]) + W2[j - 7] + s0(W1[1 + j]) + W1[j]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; // Round function #pragma unroll 16 for (int j = 0; j<16; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 16] + W2[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l]; regs[0] = T1 + T2; regs[4] += T1; } ////// PART 2 #pragma unroll 2 for (int j = 0; j<2; j++) W1[j] = s1(W2[14 + j]) + W2[9 + j] + s0(W2[1 + j]) + W2[j]; #pragma unroll 5 for (int j = 2; j<7; j++) W1[j] = s1(W1[j - 2]) + W2[9 + j] + s0(W2[1 + j]) + W2[j]; #pragma unroll 8 for (int j = 7; j<15; j++) W1[j] = s1(W1[j - 2]) + W1[j - 7] + s0(W2[1 + j]) + W2[j]; W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15]; // Round function #pragma unroll 16 for (int j = 0; j<16; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 32] + W1[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l]; regs[0] = T1 + T2; regs[4] += T1; } ////// PART 3 #pragma unroll 2 for (int j = 0; j<2; j++) W2[j] = s1(W1[14 + j]) + W1[9 + j] + s0(W1[1 + j]) + W1[j]; #pragma unroll 5 for (int j = 2; j<7; j++) W2[j] = s1(W2[j - 2]) + W1[9 + j] + s0(W1[1 + j]) + W1[j]; #pragma unroll 8 for (int j = 7; j<15; j++) W2[j] = s1(W2[j - 2]) + W2[j - 7] + s0(W1[1 + j]) + W1[j]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; // Round function #pragma unroll 16 for (int j = 0; j<16; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 48] + W2[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l]; regs[0] = T1 + T2; regs[4] += T1; } #pragma unroll 8 for (int k = 0; k<8; k++) hash[k] += regs[k]; #if 1 ///// ///// Second Pass (ending) ///// #pragma unroll 8 for (int k = 0; k<8; k++) regs[k] = hash[k]; // Progress W1 #pragma unroll 64 for (int j = 0; j<64; j++) { uint32_t T1, T2; T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j] + sha256_endingTable[j]; T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]); #pragma unroll 7 for (int k = 6; k >= 0; k--) regs[k + 1] = regs[k]; regs[0] = T1 + T2; regs[4] += T1; } #pragma unroll 8 for (int k = 0; k<8; k++) hash[k] += regs[k]; // Final Hash #pragma unroll 8 for (int k = 0; k<8; k++) message[k] = SWAB32(hash[k]); #else // sha256_transform only, require an additional sha256_transform_gpu() call #pragma unroll 8 for (int k = 0; k<8; k++) message[k] = hash[k]; #endif } #endif __global__ void sha2_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t *hash = &hashBuffer[thread << 4]; #ifdef ADVANCED_SHA2 skeincoin_gpu_sha256(hash); #else uint32_t state[16]; uint32_t msg[16]; #pragma unroll for (int i = 0; i < 8; i++) state[i] = sha256_hashTable[i]; #pragma unroll for (int i = 0; i < 16; i++) msg[i] = SWAB32(hash[i]); sha256_transform_gpu(state, msg); sha256_transform_gpu(state, sha256_ending); #pragma unroll for (int i = 0; i < 8; i++) hash[i] = SWAB32(state[i]); #endif } } __host__ void sha2_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_outputHashes) { uint32_t threadsperblock = 128; dim3 block(threadsperblock); dim3 grid((threads + threadsperblock - 1) / threadsperblock); sha2_gpu_hash_64 <<< grid, block >>>(threads, startNounce, d_outputHashes); // required once per scan loop to prevent cpu 100% usage (linux) MyStreamSynchronize(NULL, 0, thr_id); } extern "C" void skeincoinhash(void *output, const void *input) { sph_skein512_context ctx_skein; SHA256_CTX sha256; uint32_t hash[16]; sph_skein512_init(&ctx_skein); sph_skein512(&ctx_skein, input, 80); sph_skein512_close(&ctx_skein, hash); SHA256_Init(&sha256); SHA256_Update(&sha256, (unsigned char *)hash, 64); SHA256_Final((unsigned char *)hash, &sha256); memcpy(output, hash, 32); } static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_skeincoin(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) endiandata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; sm5 = (device_sm[device_map[thr_id]] >= 500); bool checkSecnonce = (have_stratum || have_longpoll) && !sm5; uint32_t throughput = cuda_default_throughput(thr_id, 1U << 20); if (init[thr_id]) throughput = min(throughput, (max_nonce - first_nonce)); uint64_t target64 = 0; if (opt_benchmark) ((uint32_t*)ptarget)[7] = 0x03; if (!init[thr_id]) { cudaSetDevice(device_map[thr_id]); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); cuda_get_arch(thr_id); if (sm5) { skeincoin_init(thr_id); } else { cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput); quark_skein512_cpu_init(thr_id, throughput); cuda_check_cpu_init(thr_id, throughput); CUDA_SAFE_CALL(cudaDeviceSynchronize()); } init[thr_id] = true; } for (int k=0; k < 19; k++) be32enc(&endiandata[k], pdata[k]); if (sm5) { skeincoin_setBlock_80(thr_id, (void*)endiandata); target64 = ((uint64_t*)ptarget)[3]; } else { skein512_cpu_setBlock_80((void*)endiandata); cuda_check_cpu_setTarget(ptarget); } do { // Hash with CUDA *hashes_done = pdata[19] - first_nonce + throughput; if (sm5) { /* cuda_skeincoin.cu */ work->nonces[0] = skeincoin_hash_sm5(thr_id, throughput, pdata[19], 1, target64, &work->nonces[1]); } else { /* quark/cuda_skein512.cu */ skein512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], 1); sha2_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id]); work->nonces[0] = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]); } if (work->nonces[0] != UINT32_MAX) { uint32_t _ALIGN(64) vhash[8]; endiandata[19] = swab32(work->nonces[0]); skeincoinhash(vhash, endiandata); if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhash); if (checkSecnonce) { work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], work->valid_nonces); if (work->nonces[1] != 0) { endiandata[19] = swab32(work->nonces[1]); skeincoinhash(vhash, endiandata); if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { work->valid_nonces++; bn_set_target_ratio(work, vhash, 1); } pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; } else { pdata[19] = work->nonces[0] + 1; } } else { pdata[19] = work->nonces[0] + 1; // cursor for next scan } return work->valid_nonces; } else if (vhash[7] > ptarget[7]) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); pdata[19] = work->nonces[0] + 1; continue; } } if ((uint64_t) throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; return 0; } // cleanup extern "C" void free_skeincoin(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); if (sm5) skeincoin_free(thr_id); else { cudaFree(d_hash[thr_id]); cuda_check_cpu_free(thr_id); } init[thr_id] = false; cudaDeviceSynchronize(); }