// // Experimental Kernel for Kepler (Compute 3.5) devices // code submitted by nVidia performance engineer Alexey Panteleev // with modifications by Christian Buchner // // for Compute 3.5 // NOTE: compile this .cu module for compute_35,sm_35 with --maxrregcount=80 // for Compute 3.0 // NOTE: compile this .cu module for compute_30,sm_30 with --maxrregcount=63 // #include #include #include #include "miner.h" #include "salsa_kernel.h" #include "nv_kernel2.h" #define THREADS_PER_WU 1 // single thread per hash #if __CUDA_ARCH__ < 350 // Kepler (Compute 3.0) #define __ldg(x) (*(x)) #endif #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 // grab lane ID static __device__ __inline__ unsigned int __laneId() { unsigned int laneId; asm( "mov.u32 %0, %%laneid;" : "=r"( laneId ) ); return laneId; } // forward references template __global__ void nv2_scrypt_core_kernelA(uint32_t *g_idata, int begin, int end); template __global__ void nv2_scrypt_core_kernelB(uint32_t *g_odata, int begin, int end); template __global__ void nv2_scrypt_core_kernelA_LG(uint32_t *g_idata, int begin, int end, unsigned int LOOKUP_GAP); template __global__ void nv2_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned int LOOKUP_GAP); // scratchbuf constants (pointers to scratch buffer for each work unit) __constant__ uint32_t* c_V[TOTAL_WARP_LIMIT]; // iteration count N __constant__ uint32_t c_N; __constant__ uint32_t c_N_1; // N - 1 __constant__ uint32_t c_spacing; // (N+LOOKUP_GAP-1)/LOOKUP_GAP NV2Kernel::NV2Kernel() : KernelInterface() { } void NV2Kernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V) { checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice)); } bool NV2Kernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache) { bool success = true; bool scrypt = IS_SCRYPT(); bool chacha = IS_SCRYPT_JANE(); // make some constants available to kernel, update only initially and when changing static uint32_t prev_N[MAX_GPUS] = { 0 }; if (N != prev_N[thr_id]) { uint32_t h_N = N; uint32_t h_N_1 = N-1; uint32_t h_spacing = (N+LOOKUP_GAP-1)/LOOKUP_GAP; cudaMemcpyToSymbolAsync(c_N, &h_N, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream); cudaMemcpyToSymbolAsync(c_N_1, &h_N_1, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream); cudaMemcpyToSymbolAsync(c_spacing, &h_spacing, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream); prev_N[thr_id] = N; } // First phase: Sequential writes to scratchpad. const int batch = device_batchsize[thr_id]; unsigned int pos = 0; do { if (LOOKUP_GAP == 1) { if (scrypt) nv2_scrypt_core_kernelA <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); if (chacha) nv2_scrypt_core_kernelA<<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); } else { if (scrypt) nv2_scrypt_core_kernelA_LG <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); if (chacha) nv2_scrypt_core_kernelA_LG<<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); } pos += batch; } while (pos < N); // Second phase: Random read access from scratchpad. pos = 0; do { if (LOOKUP_GAP == 1) { if (scrypt) nv2_scrypt_core_kernelB <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); if (chacha) nv2_scrypt_core_kernelB <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); } else { if (scrypt) nv2_scrypt_core_kernelB_LG <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); if (chacha) nv2_scrypt_core_kernelB_LG <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); } pos += batch; } while (pos < N); return success; } static __device__ uint4& operator^=(uint4& left, const uint4& right) { left.x ^= right.x; left.y ^= right.y; left.z ^= right.z; left.w ^= right.w; return left; } __device__ __forceinline__ uint4 shfl4(const uint4 val, unsigned int lane, unsigned int width) { return make_uint4( (unsigned int)__shfl((int)val.x, lane, width), (unsigned int)__shfl((int)val.y, lane, width), (unsigned int)__shfl((int)val.z, lane, width), (unsigned int)__shfl((int)val.w, lane, width) ); } __device__ __forceinline__ void __transposed_write_BC(uint4 (&B)[4], uint4 (&C)[4], uint4 *D, int spacing) { unsigned int laneId = __laneId(); unsigned int lane8 = laneId%8; unsigned int tile = laneId/8; uint4 T1[8], T2[8]; /* Source matrix, A-H are threads, 0-7 are data items, thread A is marked with `*`: *A0 B0 C0 D0 E0 F0 G0 H0 *A1 B1 C1 D1 E1 F1 G1 H1 *A2 B2 C2 D2 E2 F2 G2 H2 *A3 B3 C3 D3 E3 F3 G3 H3 *A4 B4 C4 D4 E4 F4 G4 H4 *A5 B5 C5 D5 E5 F5 G5 H5 *A6 B6 C6 D6 E6 F6 G6 H6 *A7 B7 C7 D7 E7 F7 G7 H7 */ // rotate rows T1[0] = B[0]; T1[1] = shfl4(B[1], lane8 + 7, 8); T1[2] = shfl4(B[2], lane8 + 6, 8); T1[3] = shfl4(B[3], lane8 + 5, 8); T1[4] = shfl4(C[0], lane8 + 4, 8); T1[5] = shfl4(C[1], lane8 + 3, 8); T1[6] = shfl4(C[2], lane8 + 2, 8); T1[7] = shfl4(C[3], lane8 + 1, 8); /* Matrix after row rotates: *A0 B0 C0 D0 E0 F0 G0 H0 H1 *A1 B1 C1 D1 E1 F1 G1 G2 H2 *A2 B2 C2 D2 E2 F2 F3 G3 H3 *A3 B3 C3 D3 E3 E4 F4 G4 H4 *A4 B4 C4 D4 D5 E5 F5 G5 H5 *A5 B5 C5 C6 D6 E6 F6 G6 H6 *A6 B6 B7 C7 D7 E7 F7 G7 H7 *A7 */ // rotate columns up using a barrel shifter simulation // column X is rotated up by (X+1) items #pragma unroll 8 for(int n = 0; n < 8; n++) T2[n] = ((lane8+1) & 1) ? T1[(n+1) % 8] : T1[n]; #pragma unroll 8 for(int n = 0; n < 8; n++) T1[n] = ((lane8+1) & 2) ? T2[(n+2) % 8] : T2[n]; #pragma unroll 8 for(int n = 0; n < 8; n++) T2[n] = ((lane8+1) & 4) ? T1[(n+4) % 8] : T1[n]; /* Matrix after column rotates: H1 H2 H3 H4 H5 H6 H7 H0 G2 G3 G4 G5 G6 G7 G0 G1 F3 F4 F5 F6 F7 F0 F1 F2 E4 E5 E6 E7 E0 E1 E2 E3 D5 D6 D7 D0 D1 D2 D3 D4 C6 C7 C0 C1 C2 C3 C4 C5 B7 B0 B1 B2 B3 B4 B5 B6 *A0 *A1 *A2 *A3 *A4 *A5 *A6 *A7 */ // rotate rows again using address math and write to D, in reverse row order D[spacing*2*(32*tile )+ lane8 ] = T2[7]; D[spacing*2*(32*tile+4 )+(lane8+7)%8] = T2[6]; D[spacing*2*(32*tile+8 )+(lane8+6)%8] = T2[5]; D[spacing*2*(32*tile+12)+(lane8+5)%8] = T2[4]; D[spacing*2*(32*tile+16)+(lane8+4)%8] = T2[3]; D[spacing*2*(32*tile+20)+(lane8+3)%8] = T2[2]; D[spacing*2*(32*tile+24)+(lane8+2)%8] = T2[1]; D[spacing*2*(32*tile+28)+(lane8+1)%8] = T2[0]; } __device__ __forceinline__ void __transposed_read_BC(const uint4 *S, uint4 (&B)[4], uint4 (&C)[4], int spacing, int row) { unsigned int laneId = __laneId(); unsigned int lane8 = laneId%8; unsigned int tile = laneId/8; // Perform the same transposition as in __transposed_write_BC, but in reverse order. // See the illustrations in comments for __transposed_write_BC. // read and rotate rows, in reverse row order uint4 T1[8], T2[8]; T1[7] = __ldg(&S[(spacing*2*(32*tile ) + lane8 + 8*__shfl(row, 0, 8))]); T1[6] = __ldg(&S[(spacing*2*(32*tile+4 ) + (lane8+7)%8 + 8*__shfl(row, 1, 8))]); T1[5] = __ldg(&S[(spacing*2*(32*tile+8 ) + (lane8+6)%8 + 8*__shfl(row, 2, 8))]); T1[4] = __ldg(&S[(spacing*2*(32*tile+12) + (lane8+5)%8 + 8*__shfl(row, 3, 8))]); T1[3] = __ldg(&S[(spacing*2*(32*tile+16) + (lane8+4)%8 + 8*__shfl(row, 4, 8))]); T1[2] = __ldg(&S[(spacing*2*(32*tile+20) + (lane8+3)%8 + 8*__shfl(row, 5, 8))]); T1[1] = __ldg(&S[(spacing*2*(32*tile+24) + (lane8+2)%8 + 8*__shfl(row, 6, 8))]); T1[0] = __ldg(&S[(spacing*2*(32*tile+28) + (lane8+1)%8 + 8*__shfl(row, 7, 8))]); // rotate columns down using a barrel shifter simulation // column X is rotated down by (X+1) items, or up by (8-(X+1)) = (7-X) items #pragma unroll 8 for(int n = 0; n < 8; n++) T2[n] = ((7-lane8) & 1) ? T1[(n+1) % 8] : T1[n]; #pragma unroll 8 for(int n = 0; n < 8; n++) T1[n] = ((7-lane8) & 2) ? T2[(n+2) % 8] : T2[n]; #pragma unroll 8 for(int n = 0; n < 8; n++) T2[n] = ((7-lane8) & 4) ? T1[(n+4) % 8] : T1[n]; // rotate rows B[0] = T2[0]; B[1] = shfl4(T2[1], lane8 + 1, 8); B[2] = shfl4(T2[2], lane8 + 2, 8); B[3] = shfl4(T2[3], lane8 + 3, 8); C[0] = shfl4(T2[4], lane8 + 4, 8); C[1] = shfl4(T2[5], lane8 + 5, 8); C[2] = shfl4(T2[6], lane8 + 6, 8); C[3] = shfl4(T2[7], lane8 + 7, 8); } __device__ __forceinline__ void __transposed_xor_BC(const uint4 *S, uint4 (&B)[4], uint4 (&C)[4], int spacing, int row) { uint4 BT[4], CT[4]; __transposed_read_BC(S, BT, CT, spacing, row); #pragma unroll 4 for(int n = 0; n < 4; n++) { B[n] ^= BT[n]; C[n] ^= CT[n]; } } #if __CUDA_ARCH__ < 350 // Kepler (Compute 3.0) #define ROTL(a, b) ((a)<<(b))|((a)>>(32-(b))) #else // Kepler (Compute 3.5) #define ROTL(a, b) __funnelshift_l( a, a, b ); #endif #if 0 #define QUARTER(a,b,c,d) \ a += b; d ^= a; d = ROTL(d,16); \ c += d; b ^= c; b = ROTL(b,12); \ a += b; d ^= a; d = ROTL(d,8); \ c += d; b ^= c; b = ROTL(b,7); static __device__ void xor_chacha8(uint4 *B, uint4 *C) { uint32_t x[16]; x[0]=(B[0].x ^= C[0].x); x[1]=(B[0].y ^= C[0].y); x[2]=(B[0].z ^= C[0].z); x[3]=(B[0].w ^= C[0].w); x[4]=(B[1].x ^= C[1].x); x[5]=(B[1].y ^= C[1].y); x[6]=(B[1].z ^= C[1].z); x[7]=(B[1].w ^= C[1].w); x[8]=(B[2].x ^= C[2].x); x[9]=(B[2].y ^= C[2].y); x[10]=(B[2].z ^= C[2].z); x[11]=(B[2].w ^= C[2].w); x[12]=(B[3].x ^= C[3].x); x[13]=(B[3].y ^= C[3].y); x[14]=(B[3].z ^= C[3].z); x[15]=(B[3].w ^= C[3].w); /* Operate on columns. */ QUARTER( x[0], x[4], x[ 8], x[12] ) QUARTER( x[1], x[5], x[ 9], x[13] ) QUARTER( x[2], x[6], x[10], x[14] ) QUARTER( x[3], x[7], x[11], x[15] ) /* Operate on diagonals */ QUARTER( x[0], x[5], x[10], x[15] ) QUARTER( x[1], x[6], x[11], x[12] ) QUARTER( x[2], x[7], x[ 8], x[13] ) QUARTER( x[3], x[4], x[ 9], x[14] ) /* Operate on columns. */ QUARTER( x[0], x[4], x[ 8], x[12] ) QUARTER( x[1], x[5], x[ 9], x[13] ) QUARTER( x[2], x[6], x[10], x[14] ) QUARTER( x[3], x[7], x[11], x[15] ) /* Operate on diagonals */ QUARTER( x[0], x[5], x[10], x[15] ) QUARTER( x[1], x[6], x[11], x[12] ) QUARTER( x[2], x[7], x[ 8], x[13] ) QUARTER( x[3], x[4], x[ 9], x[14] ) /* Operate on columns. */ QUARTER( x[0], x[4], x[ 8], x[12] ) QUARTER( x[1], x[5], x[ 9], x[13] ) QUARTER( x[2], x[6], x[10], x[14] ) QUARTER( x[3], x[7], x[11], x[15] ) /* Operate on diagonals */ QUARTER( x[0], x[5], x[10], x[15] ) QUARTER( x[1], x[6], x[11], x[12] ) QUARTER( x[2], x[7], x[ 8], x[13] ) QUARTER( x[3], x[4], x[ 9], x[14] ) /* Operate on columns. */ QUARTER( x[0], x[4], x[ 8], x[12] ) QUARTER( x[1], x[5], x[ 9], x[13] ) QUARTER( x[2], x[6], x[10], x[14] ) QUARTER( x[3], x[7], x[11], x[15] ) /* Operate on diagonals */ QUARTER( x[0], x[5], x[10], x[15] ) QUARTER( x[1], x[6], x[11], x[12] ) QUARTER( x[2], x[7], x[ 8], x[13] ) QUARTER( x[3], x[4], x[ 9], x[14] ) B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7]; B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15]; } #else #define ADD4(d1,d2,d3,d4,s1,s2,s3,s4) \ d1 += s1; d2 += s2; d3 += s3; d4 += s4; #define XOR4(d1,d2,d3,d4,s1,s2,s3,s4) \ d1 ^= s1; d2 ^= s2; d3 ^= s3; d4 ^= s4; #define ROTL4(d1,d2,d3,d4,amt) \ d1 = ROTL(d1, amt); d2 = ROTL(d2, amt); d3 = ROTL(d3, amt); d4 = ROTL(d4, amt); #define QROUND(a1,a2,a3,a4, b1,b2,b3,b4, c1,c2,c3,c4, amt) \ ADD4 (a1,a2,a3,a4, c1,c2,c3,c4) \ XOR4 (b1,b2,b3,b4, a1,a2,a3,a4) \ ROTL4(b1,b2,b3,b4, amt) static __device__ void xor_chacha8(uint4 *B, uint4 *C) { uint32_t x[16]; x[0]=(B[0].x ^= C[0].x); x[1]=(B[0].y ^= C[0].y); x[2]=(B[0].z ^= C[0].z); x[3]=(B[0].w ^= C[0].w); x[4]=(B[1].x ^= C[1].x); x[5]=(B[1].y ^= C[1].y); x[6]=(B[1].z ^= C[1].z); x[7]=(B[1].w ^= C[1].w); x[8]=(B[2].x ^= C[2].x); x[9]=(B[2].y ^= C[2].y); x[10]=(B[2].z ^= C[2].z); x[11]=(B[2].w ^= C[2].w); x[12]=(B[3].x ^= C[3].x); x[13]=(B[3].y ^= C[3].y); x[14]=(B[3].z ^= C[3].z); x[15]=(B[3].w ^= C[3].w); /* Operate on columns. */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); /* Operate on diagonals */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); /* Operate on columns. */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); /* Operate on diagonals */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); /* Operate on columns. */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); /* Operate on diagonals */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); /* Operate on columns. */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); /* Operate on diagonals */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7]; B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15]; } #endif #define ROTL7(a0,a1,a2,a3,a00,a10,a20,a30){\ a0^=ROTL(a00, 7); a1^=ROTL(a10, 7); a2^=ROTL(a20, 7); a3^=ROTL(a30, 7);\ };\ #define ROTL9(a0,a1,a2,a3,a00,a10,a20,a30){\ a0^=ROTL(a00, 9); a1^=ROTL(a10, 9); a2^=ROTL(a20, 9); a3^=ROTL(a30, 9);\ };\ #define ROTL13(a0,a1,a2,a3,a00,a10,a20,a30){\ a0^=ROTL(a00, 13); a1^=ROTL(a10, 13); a2^=ROTL(a20, 13); a3^=ROTL(a30, 13);\ };\ #define ROTL18(a0,a1,a2,a3,a00,a10,a20,a30){\ a0^=ROTL(a00, 18); a1^=ROTL(a10, 18); a2^=ROTL(a20, 18); a3^=ROTL(a30, 18);\ };\ static __device__ void xor_salsa8(uint4 *B, uint4 *C) { uint32_t x[16]; x[0]=(B[0].x ^= C[0].x); x[1]=(B[0].y ^= C[0].y); x[2]=(B[0].z ^= C[0].z); x[3]=(B[0].w ^= C[0].w); x[4]=(B[1].x ^= C[1].x); x[5]=(B[1].y ^= C[1].y); x[6]=(B[1].z ^= C[1].z); x[7]=(B[1].w ^= C[1].w); x[8]=(B[2].x ^= C[2].x); x[9]=(B[2].y ^= C[2].y); x[10]=(B[2].z ^= C[2].z); x[11]=(B[2].w ^= C[2].w); x[12]=(B[3].x ^= C[3].x); x[13]=(B[3].y ^= C[3].y); x[14]=(B[3].z ^= C[3].z); x[15]=(B[3].w ^= C[3].w); /* Operate on columns. */ ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); /* Operate on rows. */ ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); /* Operate on columns. */ ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); /* Operate on rows. */ ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); /* Operate on columns. */ ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); /* Operate on rows. */ ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); /* Operate on columns. */ ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); /* Operate on rows. */ ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7]; B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15]; } template static __device__ void block_mixer(uint4 *B, uint4 *C) { switch (ALGO) { case A_SCRYPT: xor_salsa8(B, C); break; case A_SCRYPT_JANE: xor_chacha8(B, C); break; } } //////////////////////////////////////////////////////////////////////////////// //! Experimental Scrypt core kernel for Titan devices. //! @param g_idata input data in global memory //! @param g_odata output data in global memory //////////////////////////////////////////////////////////////////////////////// template __global__ void nv2_scrypt_core_kernelA(uint32_t *g_idata, int begin, int end) { int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize; g_idata += 32 * offset; uint32_t * V = c_V[offset / warpSize]; uint4 B[4], C[4]; int i = begin; if(i == 0) { __transposed_read_BC((uint4*)g_idata, B, C, 1, 0); __transposed_write_BC(B, C, (uint4*)V, c_N); ++i; } else __transposed_read_BC((uint4*)(V + (i-1)*32), B, C, c_N, 0); while(i < end) { block_mixer(B, C); block_mixer(C, B); __transposed_write_BC(B, C, (uint4*)(V + i*32), c_N); ++i; } } template __global__ void nv2_scrypt_core_kernelA_LG(uint32_t *g_idata, int begin, int end, unsigned int LOOKUP_GAP) { int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize; g_idata += 32 * offset; uint32_t * V = c_V[offset / warpSize]; uint4 B[4], C[4]; int i = begin; if(i == 0) { __transposed_read_BC((uint4*)g_idata, B, C, 1, 0); __transposed_write_BC(B, C, (uint4*)V, c_spacing); ++i; } else { int pos = (i-1)/LOOKUP_GAP, loop = (i-1)-pos*LOOKUP_GAP; __transposed_read_BC((uint4*)(V + pos*32), B, C, c_spacing, 0); while(loop--) { block_mixer(B, C); block_mixer(C, B); } } while(i < end) { block_mixer(B, C); block_mixer(C, B); if (i % LOOKUP_GAP == 0) __transposed_write_BC(B, C, (uint4*)(V + (i/LOOKUP_GAP)*32), c_spacing); ++i; } } template __global__ void nv2_scrypt_core_kernelB(uint32_t *g_odata, int begin, int end) { int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize; g_odata += 32 * offset; uint32_t * V = c_V[offset / warpSize]; uint4 B[4], C[4]; if(begin == 0) { __transposed_read_BC((uint4*)V, B, C, c_N, c_N_1); block_mixer(B, C); block_mixer(C, B); } else __transposed_read_BC((uint4*)g_odata, B, C, 1, 0); for (int i = begin; i < end; i++) { int slot = C[0].x & c_N_1; __transposed_xor_BC((uint4*)(V), B, C, c_N, slot); block_mixer(B, C); block_mixer(C, B); } __transposed_write_BC(B, C, (uint4*)(g_odata), 1); } template __global__ void nv2_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned int LOOKUP_GAP) { int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize; g_odata += 32 * offset; uint32_t * V = c_V[offset / warpSize]; uint4 B[4], C[4]; if(begin == 0) { int pos = c_N_1/LOOKUP_GAP, loop = 1 + (c_N_1-pos*LOOKUP_GAP); __transposed_read_BC((uint4*)V, B, C, c_spacing, pos); while(loop--) { block_mixer(B, C); block_mixer(C, B); } } else { __transposed_read_BC((uint4*)g_odata, B, C, 1, 0); } for (int i = begin; i < end; i++) { int slot = C[0].x & c_N_1; int pos = slot/LOOKUP_GAP, loop = slot-pos*LOOKUP_GAP; uint4 b[4], c[4]; __transposed_read_BC((uint4*)(V), b, c, c_spacing, pos); while(loop--) { block_mixer(b, c); block_mixer(c, b); } #pragma unroll 4 for(int n = 0; n < 4; n++) { B[n] ^= b[n]; C[n] ^= c[n]; } block_mixer(B, C); block_mixer(C, B); } __transposed_write_BC(B, C, (uint4*)(g_odata), 1); } #endif /* prevent SM 2 */