// // =============== KECCAK part on nVidia GPU ====================== // // The keccak512 (SHA-3) is used in the PBKDF2 for scrypt-jane coins // in place of the SHA2 based PBKDF2 used in scrypt coins. // // NOTE: compile this .cu module for compute_20,sm_20 with --maxrregcount=64 // #include #include "miner.h" #include "cuda_helper.h" #include "keccak.h" #include "salsa_kernel.h" // define some error checking macros #define DELIMITER '/' #define __FILENAME__ ( strrchr(__FILE__, DELIMITER) != NULL ? strrchr(__FILE__, DELIMITER)+1 : __FILE__ ) #undef checkCudaErrors #define checkCudaErrors(x) \ { \ cudaGetLastError(); \ x; \ cudaError_t err = cudaGetLastError(); \ if (err != cudaSuccess && !abort_flag) \ applog(LOG_ERR, "GPU #%d: cudaError %d (%s) (%s line %d)\n", device_map[thr_id], err, cudaGetErrorString(err), __FILENAME__, __LINE__); \ } // from salsa_kernel.cu extern std::map context_idata[2]; extern std::map context_odata[2]; extern std::map context_streams[2]; extern std::map context_hash[2]; #ifndef ROTL64 #define ROTL64(a,b) (((a) << (b)) | ((a) >> (64 - b))) #endif // CB #define U32TO64_LE(p) \ (((uint64_t)(*p)) | (((uint64_t)(*(p + 1))) << 32)) #define U64TO32_LE(p, v) \ *p = (uint32_t)((v)); *(p+1) = (uint32_t)((v) >> 32); static __device__ void mycpy64(uint32_t *d, const uint32_t *s) { #pragma unroll 16 for (int k=0; k < 16; ++k) d[k] = s[k]; } static __device__ void mycpy56(uint32_t *d, const uint32_t *s) { #pragma unroll 14 for (int k=0; k < 14; ++k) d[k] = s[k]; } static __device__ void mycpy32(uint32_t *d, const uint32_t *s) { #pragma unroll 8 for (int k=0; k < 8; ++k) d[k] = s[k]; } static __device__ void mycpy8(uint32_t *d, const uint32_t *s) { #pragma unroll 2 for (int k=0; k < 2; ++k) d[k] = s[k]; } static __device__ void mycpy4(uint32_t *d, const uint32_t *s) { *d = *s; } // ---------------------------- BEGIN keccak functions ------------------------------------ #define KECCAK_HASH "Keccak-512" typedef struct keccak_hash_state_t { uint64_t state[25]; // 25*2 uint32_t buffer[72/4]; // 72 } keccak_hash_state; __device__ void statecopy0(keccak_hash_state *d, keccak_hash_state *s) { #pragma unroll 25 for (int i=0; i < 25; ++i) d->state[i] = s->state[i]; } __device__ void statecopy8(keccak_hash_state *d, keccak_hash_state *s) { #pragma unroll 25 for (int i=0; i < 25; ++i) d->state[i] = s->state[i]; #pragma unroll 2 for (int i=0; i < 2; ++i) d->buffer[i] = s->buffer[i]; } static const uint64_t host_keccak_round_constants[24] = { 0x0000000000000001ull, 0x0000000000008082ull, 0x800000000000808aull, 0x8000000080008000ull, 0x000000000000808bull, 0x0000000080000001ull, 0x8000000080008081ull, 0x8000000000008009ull, 0x000000000000008aull, 0x0000000000000088ull, 0x0000000080008009ull, 0x000000008000000aull, 0x000000008000808bull, 0x800000000000008bull, 0x8000000000008089ull, 0x8000000000008003ull, 0x8000000000008002ull, 0x8000000000000080ull, 0x000000000000800aull, 0x800000008000000aull, 0x8000000080008081ull, 0x8000000000008080ull, 0x0000000080000001ull, 0x8000000080008008ull }; __constant__ uint64_t c_keccak_round_constants[24]; __constant__ uint32_t c_data[20]; __device__ void keccak_block(keccak_hash_state *S, const uint32_t *in) { uint64_t *s = S->state, t[5], u[5], v, w; /* absorb input */ #pragma unroll 9 for (int i = 0; i < 72 / 8; i++, in += 2) s[i] ^= U32TO64_LE(in); for (int i = 0; i < 24; i++) { /* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; /* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ u[0] = t[4] ^ ROTL64(t[1], 1); u[1] = t[0] ^ ROTL64(t[2], 1); u[2] = t[1] ^ ROTL64(t[3], 1); u[3] = t[2] ^ ROTL64(t[4], 1); u[4] = t[3] ^ ROTL64(t[0], 1); /* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; /* rho pi: b[..] = rotl(a[..], ..) */ v = s[ 1]; s[ 1] = ROTL64(s[ 6], 44); s[ 6] = ROTL64(s[ 9], 20); s[ 9] = ROTL64(s[22], 61); s[22] = ROTL64(s[14], 39); s[14] = ROTL64(s[20], 18); s[20] = ROTL64(s[ 2], 62); s[ 2] = ROTL64(s[12], 43); s[12] = ROTL64(s[13], 25); s[13] = ROTL64(s[19], 8); s[19] = ROTL64(s[23], 56); s[23] = ROTL64(s[15], 41); s[15] = ROTL64(s[ 4], 27); s[ 4] = ROTL64(s[24], 14); s[24] = ROTL64(s[21], 2); s[21] = ROTL64(s[ 8], 55); s[ 8] = ROTL64(s[16], 45); s[16] = ROTL64(s[ 5], 36); s[ 5] = ROTL64(s[ 3], 28); s[ 3] = ROTL64(s[18], 21); s[18] = ROTL64(s[17], 15); s[17] = ROTL64(s[11], 10); s[11] = ROTL64(s[ 7], 6); s[ 7] = ROTL64(s[10], 3); s[10] = ROTL64( v, 1); /* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w; v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w; v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; /* iota: a[0,0] ^= round constant */ s[0] ^= c_keccak_round_constants[i]; } } __device__ void keccak_hash_init(keccak_hash_state *S) { #pragma unroll 25 for (int i=0; i<25; ++i) S->state[i] = 0ULL; } // assuming there is no leftover data and exactly 72 bytes are incoming // we can directly call into the block hashing function __device__ void keccak_hash_update72(keccak_hash_state *S, const uint32_t *in) { keccak_block(S, in); } __device__ void keccak_hash_update8(keccak_hash_state *S, const uint32_t *in) { mycpy8(S->buffer, in); } __device__ void keccak_hash_update4_8(keccak_hash_state *S, const uint32_t *in) { mycpy4(S->buffer+8/4, in); } __device__ void keccak_hash_update4_56(keccak_hash_state *S, const uint32_t *in) { mycpy4(S->buffer+56/4, in); } __device__ void keccak_hash_update56(keccak_hash_state *S, const uint32_t *in) { mycpy56(S->buffer, in); } __device__ void keccak_hash_update64(keccak_hash_state *S, const uint32_t *in) { mycpy64(S->buffer, in); } __device__ void keccak_hash_finish8(keccak_hash_state *S, uint32_t *hash) { S->buffer[8/4] = 0x01; #pragma unroll 15 for (int i=8/4+1; i < 72/4; ++i) S->buffer[i] = 0; S->buffer[72/4 - 1] |= 0x80000000U; keccak_block(S, (const uint32_t*)S->buffer); #pragma unroll 8 for (int i = 0; i < 64; i += 8) { U64TO32_LE((&hash[i/4]), S->state[i / 8]); } } __device__ void keccak_hash_finish12(keccak_hash_state *S, uint32_t *hash) { S->buffer[12/4] = 0x01; #pragma unroll 14 for (int i=12/4+1; i < 72/4; ++i) S->buffer[i] = 0; S->buffer[72/4 - 1] |= 0x80000000U; keccak_block(S, (const uint32_t*)S->buffer); #pragma unroll 8 for (int i = 0; i < 64; i += 8) { U64TO32_LE((&hash[i/4]), S->state[i / 8]); } } __device__ void keccak_hash_finish60(keccak_hash_state *S, uint32_t *hash) { S->buffer[60/4] = 0x01; #pragma unroll for (int i=60/4+1; i < 72/4; ++i) S->buffer[i] = 0; S->buffer[72/4 - 1] |= 0x80000000U; keccak_block(S, (const uint32_t*)S->buffer); #pragma unroll 8 for (int i = 0; i < 64; i += 8) { U64TO32_LE((&hash[i/4]), S->state[i / 8]); } } __device__ void keccak_hash_finish64(keccak_hash_state *S, uint32_t *hash) { S->buffer[64/4] = 0x01; #pragma unroll for (int i=64/4+1; i < 72/4; ++i) S->buffer[i] = 0; S->buffer[72/4 - 1] |= 0x80000000U; keccak_block(S, (const uint32_t*)S->buffer); #pragma unroll 8 for (int i = 0; i < 64; i += 8) { U64TO32_LE((&hash[i/4]), S->state[i / 8]); } } // ---------------------------- END keccak functions ------------------------------------ // ---------------------------- BEGIN PBKDF2 functions ------------------------------------ typedef struct pbkdf2_hmac_state_t { keccak_hash_state inner, outer; } pbkdf2_hmac_state; __device__ void pbkdf2_hash(uint32_t *hash, const uint32_t *m) { keccak_hash_state st; keccak_hash_init(&st); keccak_hash_update72(&st, m); keccak_hash_update8(&st, m+72/4); keccak_hash_finish8(&st, hash); } /* hmac */ __device__ void pbkdf2_hmac_init80(pbkdf2_hmac_state *st, const uint32_t *key) { uint32_t pad[72/4] = { 0 }; //#pragma unroll 18 //for (int i = 0; i < 72/4; i++) // pad[i] = 0; keccak_hash_init(&st->inner); keccak_hash_init(&st->outer); /* key > blocksize bytes, hash it */ pbkdf2_hash(pad, key); /* inner = (key ^ 0x36) */ /* h(inner || ...) */ #pragma unroll 18 for (int i = 0; i < 72/4; i++) pad[i] ^= 0x36363636U; keccak_hash_update72(&st->inner, pad); /* outer = (key ^ 0x5c) */ /* h(outer || ...) */ #pragma unroll 18 for (int i = 0; i < 72/4; i++) pad[i] ^= 0x6a6a6a6aU; keccak_hash_update72(&st->outer, pad); } // assuming there is no leftover data and exactly 72 bytes are incoming // we can directly call into the block hashing function __device__ void pbkdf2_hmac_update72(pbkdf2_hmac_state *st, const uint32_t *m) { /* h(inner || m...) */ keccak_hash_update72(&st->inner, m); } __device__ void pbkdf2_hmac_update8(pbkdf2_hmac_state *st, const uint32_t *m) { /* h(inner || m...) */ keccak_hash_update8(&st->inner, m); } __device__ void pbkdf2_hmac_update4_8(pbkdf2_hmac_state *st, const uint32_t *m) { /* h(inner || m...) */ keccak_hash_update4_8(&st->inner, m); } __device__ void pbkdf2_hmac_update4_56(pbkdf2_hmac_state *st, const uint32_t *m) { /* h(inner || m...) */ keccak_hash_update4_56(&st->inner, m); } __device__ void pbkdf2_hmac_update56(pbkdf2_hmac_state *st, const uint32_t *m) { /* h(inner || m...) */ keccak_hash_update56(&st->inner, m); } __device__ void pbkdf2_hmac_finish12(pbkdf2_hmac_state *st, uint32_t *mac) { /* h(inner || m) */ uint32_t innerhash[16]; keccak_hash_finish12(&st->inner, innerhash); /* h(outer || h(inner || m)) */ keccak_hash_update64(&st->outer, innerhash); keccak_hash_finish64(&st->outer, mac); } __device__ void pbkdf2_hmac_finish60(pbkdf2_hmac_state *st, uint32_t *mac) { /* h(inner || m) */ uint32_t innerhash[16]; keccak_hash_finish60(&st->inner, innerhash); /* h(outer || h(inner || m)) */ keccak_hash_update64(&st->outer, innerhash); keccak_hash_finish64(&st->outer, mac); } __device__ void pbkdf2_statecopy8(pbkdf2_hmac_state *d, pbkdf2_hmac_state *s) { statecopy8(&d->inner, &s->inner); statecopy0(&d->outer, &s->outer); } // ---------------------------- END PBKDF2 functions ------------------------------------ __global__ __launch_bounds__(128) void cuda_pre_keccak512(uint32_t *g_idata, uint32_t nonce) { uint32_t data[20]; const uint32_t thread = (blockIdx.x * blockDim.x) + threadIdx.x; nonce += thread; g_idata += thread * 32; #pragma unroll for (int i=0; i<19; i++) data[i] = cuda_swab32(c_data[i]); data[19] = cuda_swab32(nonce); // scrypt_pbkdf2_1((const uint8_t*)data, 80, (const uint8_t*)data, 80, (uint8_t*)g_idata, 128); pbkdf2_hmac_state hmac_pw; /* hmac(password, ...) */ pbkdf2_hmac_init80(&hmac_pw, data); /* hmac(password, salt...) */ pbkdf2_hmac_update72(&hmac_pw, data); pbkdf2_hmac_update8(&hmac_pw, data+72/4); pbkdf2_hmac_state work; uint32_t ti[16]; /* U1 = hmac(password, salt || be(i)) */ uint32_t be = 0x01000000U;//cuda_swab32(1); pbkdf2_statecopy8(&work, &hmac_pw); pbkdf2_hmac_update4_8(&work, &be); pbkdf2_hmac_finish12(&work, ti); mycpy64(g_idata, ti); be = 0x02000000U;//cuda_swab32(2); pbkdf2_statecopy8(&work, &hmac_pw); pbkdf2_hmac_update4_8(&work, &be); pbkdf2_hmac_finish12(&work, ti); mycpy64(g_idata+16, ti); } __global__ __launch_bounds__(128) void cuda_post_keccak512(uint32_t *g_odata, uint32_t *g_hash, uint32_t nonce) { uint32_t data[20]; const uint32_t thread = (blockIdx.x * blockDim.x) + threadIdx.x; g_hash += thread * 8; g_odata += thread * 32; nonce += thread; #pragma unroll for (int i=0; i<19; i++) data[i] = cuda_swab32(c_data[i]); data[19] = cuda_swab32(nonce); // scrypt_pbkdf2_1((const uint8_t*)data, 80, (const uint8_t*)g_odata, 128, (uint8_t*)g_hash, 32); pbkdf2_hmac_state hmac_pw; /* hmac(password, ...) */ pbkdf2_hmac_init80(&hmac_pw, data); /* hmac(password, salt...) */ pbkdf2_hmac_update72(&hmac_pw, g_odata); pbkdf2_hmac_update56(&hmac_pw, g_odata+72/4); uint32_t ti[16]; /* U1 = hmac(password, salt || be(i)) */ uint32_t be = 0x01000000U;//cuda_swab32(1); pbkdf2_hmac_update4_56(&hmac_pw, &be); pbkdf2_hmac_finish60(&hmac_pw, ti); mycpy32(g_hash, ti); } // // callable host code to initialize constants and to call kernels // extern "C" void prepare_keccak512(int thr_id, const uint32_t host_pdata[20]) { static bool init[MAX_GPUS] = { 0 }; if (!init[thr_id]) { checkCudaErrors(cudaMemcpyToSymbol(c_keccak_round_constants, host_keccak_round_constants, sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice)); init[thr_id] = true; } checkCudaErrors(cudaMemcpyToSymbol(c_data, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); } extern "C" void pre_keccak512(int thr_id, int stream, uint32_t nonce, int throughput) { dim3 block(128); dim3 grid((throughput+127)/128); cuda_pre_keccak512<<>>(context_idata[stream][thr_id], nonce); } extern "C" void post_keccak512(int thr_id, int stream, uint32_t nonce, int throughput) { dim3 block(128); dim3 grid((throughput+127)/128); cuda_post_keccak512<<>>(context_odata[stream][thr_id], context_hash[stream][thr_id], nonce); }