// // Kernel that runs best on Fermi devices // // - shared memory use reduced by nearly factor 2 over legacy kernel // by transferring only half work units (16 x uint32_t) at once. // - uses ulong2/uint4 based memory transfers (each thread moves 16 bytes), // allowing for shorter unrolled loops. This relies on Fermi's better // memory controllers to get high memory troughput. // // NOTE: compile this .cu module for compute_20,sm_20 with --maxrregcount=63 // // TODO: batch-size support for this kernel // #include #include #include "miner.h" #include "salsa_kernel.h" #include "fermi_kernel.h" #define THREADS_PER_WU 1 // single thread per hash #define TEXWIDTH 32768 // forward references template __global__ void fermi_scrypt_core_kernelA(uint32_t *g_idata, unsigned int N); template __global__ void fermi_scrypt_core_kernelB(uint32_t *g_odata, unsigned int N); template __global__ void fermi_scrypt_core_kernelB_tex(uint32_t *g_odata, unsigned int N); template __global__ void fermi_scrypt_core_kernelA_LG(uint32_t *g_idata, unsigned int N, unsigned int LOOKUP_GAP); template __global__ void fermi_scrypt_core_kernelB_LG(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP); template __global__ void fermi_scrypt_core_kernelB_LG_tex(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP); // scratchbuf constants (pointers to scratch buffer for each warp, i.e. 32 hashes) __constant__ uint32_t* c_V[TOTAL_WARP_LIMIT]; // using texture references for the "tex" variants of the B kernels texture texRef1D_4_V; texture texRef2D_4_V; FermiKernel::FermiKernel() : KernelInterface() { } bool FermiKernel::bindtexture_1D(uint32_t *d_V, size_t size) { cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc(); texRef1D_4_V.normalized = 0; texRef1D_4_V.filterMode = cudaFilterModePoint; texRef1D_4_V.addressMode[0] = cudaAddressModeClamp; checkCudaErrors(cudaBindTexture(NULL, &texRef1D_4_V, d_V, &channelDesc4, size)); return true; } bool FermiKernel::bindtexture_2D(uint32_t *d_V, int width, int height, size_t pitch) { cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc(); texRef2D_4_V.normalized = 0; texRef2D_4_V.filterMode = cudaFilterModePoint; texRef2D_4_V.addressMode[0] = cudaAddressModeClamp; texRef2D_4_V.addressMode[1] = cudaAddressModeClamp; // maintain texture width of TEXWIDTH (max. limit is 65000) while (width > TEXWIDTH) { width /= 2; height *= 2; pitch /= 2; } while (width < TEXWIDTH) { width *= 2; height = (height+1)/2; pitch *= 2; } // fprintf(stderr, "total size: %u, %u bytes\n", pitch * height, width * sizeof(uint32_t) * 4 * height); // fprintf(stderr, "binding width width=%d, height=%d, pitch=%d\n", width, height,pitch); checkCudaErrors(cudaBindTexture2D(NULL, &texRef2D_4_V, d_V, &channelDesc4, width, height, pitch)); return true; } bool FermiKernel::unbindtexture_1D() { checkCudaErrors(cudaUnbindTexture(texRef1D_4_V)); return true; } bool FermiKernel::unbindtexture_2D() { checkCudaErrors(cudaUnbindTexture(texRef2D_4_V)); return true; } void FermiKernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V) { checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice)); } bool FermiKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache) { bool success = true; int shared = WARPS_PER_BLOCK * WU_PER_WARP * (16+4) * sizeof(uint32_t); // First phase: Sequential writes to scratchpad. if (LOOKUP_GAP == 1) { if (IS_SCRYPT()) fermi_scrypt_core_kernelA<<< grid, threads, shared, stream >>>(d_idata, N); if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelA<<< grid, threads, shared, stream >>>(d_idata, N); } else { if (IS_SCRYPT()) fermi_scrypt_core_kernelA_LG<<< grid, threads, shared, stream >>>(d_idata, N, LOOKUP_GAP); if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelA_LG<<< grid, threads, shared, stream >>>(d_idata, N, LOOKUP_GAP); } // Second phase: Random read access from scratchpad. if (LOOKUP_GAP == 1) { if (texture_cache) { if (texture_cache == 1) { if (IS_SCRYPT()) fermi_scrypt_core_kernelB_tex<<< grid, threads, shared, stream >>>(d_odata, N); if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_tex<<< grid, threads, shared, stream >>>(d_odata, N); } else if (texture_cache == 2) { if (IS_SCRYPT()) fermi_scrypt_core_kernelB_tex<<< grid, threads, shared, stream >>>(d_odata, N); if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_tex<<< grid, threads, shared, stream >>>(d_odata, N); } else success = false; } else { if (IS_SCRYPT()) fermi_scrypt_core_kernelB<<< grid, threads, shared, stream >>>(d_odata, N); if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB<<< grid, threads, shared, stream >>>(d_odata, N); } } else { if (texture_cache) { if (texture_cache == 1) { if (IS_SCRYPT()) fermi_scrypt_core_kernelB_LG_tex<<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_LG_tex<<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); } else if (texture_cache == 2) { if (IS_SCRYPT()) fermi_scrypt_core_kernelB_LG_tex<<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_LG_tex<<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); } else success = false; } else { if (IS_SCRYPT()) fermi_scrypt_core_kernelB_LG<<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_LG<<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP); } } return success; } #if 0 #define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) #define QUARTER(a,b,c,d) \ a += b; d ^= a; d = ROTL(d,16); \ c += d; b ^= c; b = ROTL(b,12); \ a += b; d ^= a; d = ROTL(d,8); \ c += d; b ^= c; b = ROTL(b,7); static __device__ void xor_chacha8(uint4 *B, uint4 *C) { uint32_t x[16]; x[0]=(B[0].x ^= C[0].x); x[1]=(B[0].y ^= C[0].y); x[2]=(B[0].z ^= C[0].z); x[3]=(B[0].w ^= C[0].w); x[4]=(B[1].x ^= C[1].x); x[5]=(B[1].y ^= C[1].y); x[6]=(B[1].z ^= C[1].z); x[7]=(B[1].w ^= C[1].w); x[8]=(B[2].x ^= C[2].x); x[9]=(B[2].y ^= C[2].y); x[10]=(B[2].z ^= C[2].z); x[11]=(B[2].w ^= C[2].w); x[12]=(B[3].x ^= C[3].x); x[13]=(B[3].y ^= C[3].y); x[14]=(B[3].z ^= C[3].z); x[15]=(B[3].w ^= C[3].w); /* Operate on columns. */ QUARTER( x[0], x[4], x[ 8], x[12] ) QUARTER( x[1], x[5], x[ 9], x[13] ) QUARTER( x[2], x[6], x[10], x[14] ) QUARTER( x[3], x[7], x[11], x[15] ) /* Operate on diagonals */ QUARTER( x[0], x[5], x[10], x[15] ) QUARTER( x[1], x[6], x[11], x[12] ) QUARTER( x[2], x[7], x[ 8], x[13] ) QUARTER( x[3], x[4], x[ 9], x[14] ) /* Operate on columns. */ QUARTER( x[0], x[4], x[ 8], x[12] ) QUARTER( x[1], x[5], x[ 9], x[13] ) QUARTER( x[2], x[6], x[10], x[14] ) QUARTER( x[3], x[7], x[11], x[15] ) /* Operate on diagonals */ QUARTER( x[0], x[5], x[10], x[15] ) QUARTER( x[1], x[6], x[11], x[12] ) QUARTER( x[2], x[7], x[ 8], x[13] ) QUARTER( x[3], x[4], x[ 9], x[14] ) /* Operate on columns. */ QUARTER( x[0], x[4], x[ 8], x[12] ) QUARTER( x[1], x[5], x[ 9], x[13] ) QUARTER( x[2], x[6], x[10], x[14] ) QUARTER( x[3], x[7], x[11], x[15] ) /* Operate on diagonals */ QUARTER( x[0], x[5], x[10], x[15] ) QUARTER( x[1], x[6], x[11], x[12] ) QUARTER( x[2], x[7], x[ 8], x[13] ) QUARTER( x[3], x[4], x[ 9], x[14] ) /* Operate on columns. */ QUARTER( x[0], x[4], x[ 8], x[12] ) QUARTER( x[1], x[5], x[ 9], x[13] ) QUARTER( x[2], x[6], x[10], x[14] ) QUARTER( x[3], x[7], x[11], x[15] ) /* Operate on diagonals */ QUARTER( x[0], x[5], x[10], x[15] ) QUARTER( x[1], x[6], x[11], x[12] ) QUARTER( x[2], x[7], x[ 8], x[13] ) QUARTER( x[3], x[4], x[ 9], x[14] ) B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7]; B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15]; } #else #define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) #define ADD4(d1,d2,d3,d4,s1,s2,s3,s4) \ d1 += s1; d2 += s2; d3 += s3; d4 += s4; #define XOR4(d1,d2,d3,d4,s1,s2,s3,s4) \ d1 ^= s1; d2 ^= s2; d3 ^= s3; d4 ^= s4; #define ROTL4(d1,d2,d3,d4,amt) \ d1 = ROTL(d1, amt); d2 = ROTL(d2, amt); d3 = ROTL(d3, amt); d4 = ROTL(d4, amt); #define QROUND(a1,a2,a3,a4, b1,b2,b3,b4, c1,c2,c3,c4, amt) \ ADD4 (a1,a2,a3,a4, c1,c2,c3,c4) \ XOR4 (b1,b2,b3,b4, a1,a2,a3,a4) \ ROTL4(b1,b2,b3,b4, amt) static __device__ void xor_chacha8(uint4 *B, uint4 *C) { uint32_t x[16]; x[0]=(B[0].x ^= C[0].x); x[1]=(B[0].y ^= C[0].y); x[2]=(B[0].z ^= C[0].z); x[3]=(B[0].w ^= C[0].w); x[4]=(B[1].x ^= C[1].x); x[5]=(B[1].y ^= C[1].y); x[6]=(B[1].z ^= C[1].z); x[7]=(B[1].w ^= C[1].w); x[8]=(B[2].x ^= C[2].x); x[9]=(B[2].y ^= C[2].y); x[10]=(B[2].z ^= C[2].z); x[11]=(B[2].w ^= C[2].w); x[12]=(B[3].x ^= C[3].x); x[13]=(B[3].y ^= C[3].y); x[14]=(B[3].z ^= C[3].z); x[15]=(B[3].w ^= C[3].w); /* Operate on columns. */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); /* Operate on diagonals */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); /* Operate on columns. */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); /* Operate on diagonals */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); /* Operate on columns. */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); /* Operate on diagonals */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); /* Operate on columns. */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8); QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7); /* Operate on diagonals */ QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12); QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8); QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7); B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7]; B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15]; } #endif #define ROTL7(a0,a1,a2,a3,a00,a10,a20,a30){\ a0^=(((a00)<<7) | ((a00)>>25) );\ a1^=(((a10)<<7) | ((a10)>>25) );\ a2^=(((a20)<<7) | ((a20)>>25) );\ a3^=(((a30)<<7) | ((a30)>>25) );\ };\ #define ROTL9(a0,a1,a2,a3,a00,a10,a20,a30){\ a0^=(((a00)<<9) | ((a00)>>23) );\ a1^=(((a10)<<9) | ((a10)>>23) );\ a2^=(((a20)<<9) | ((a20)>>23) );\ a3^=(((a30)<<9) | ((a30)>>23) );\ };\ #define ROTL13(a0,a1,a2,a3,a00,a10,a20,a30){\ a0^=(((a00)<<13) | ((a00)>>19) );\ a1^=(((a10)<<13) | ((a10)>>19) );\ a2^=(((a20)<<13) | ((a20)>>19) );\ a3^=(((a30)<<13) | ((a30)>>19) );\ };\ #define ROTL18(a0,a1,a2,a3,a00,a10,a20,a30){\ a0^=(((a00)<<18) | ((a00)>>14) );\ a1^=(((a10)<<18) | ((a10)>>14) );\ a2^=(((a20)<<18) | ((a20)>>14) );\ a3^=(((a30)<<18) | ((a30)>>14) );\ };\ static __device__ void xor_salsa8(uint4 *B, uint4 *C) { uint32_t x[16]; x[0]=(B[0].x ^= C[0].x); x[1]=(B[0].y ^= C[0].y); x[2]=(B[0].z ^= C[0].z); x[3]=(B[0].w ^= C[0].w); x[4]=(B[1].x ^= C[1].x); x[5]=(B[1].y ^= C[1].y); x[6]=(B[1].z ^= C[1].z); x[7]=(B[1].w ^= C[1].w); x[8]=(B[2].x ^= C[2].x); x[9]=(B[2].y ^= C[2].y); x[10]=(B[2].z ^= C[2].z); x[11]=(B[2].w ^= C[2].w); x[12]=(B[3].x ^= C[3].x); x[13]=(B[3].y ^= C[3].y); x[14]=(B[3].z ^= C[3].z); x[15]=(B[3].w ^= C[3].w); /* Operate on columns. */ ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); /* Operate on rows. */ ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); /* Operate on columns. */ ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); /* Operate on rows. */ ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); /* Operate on columns. */ ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); /* Operate on rows. */ ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); /* Operate on columns. */ ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]); ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]); ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]); ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]); /* Operate on rows. */ ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]); ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]); ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]); ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]); B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7]; B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15]; } static __device__ __forceinline__ uint4& operator^=(uint4& left, const uint4& right) { left.x ^= right.x; left.y ^= right.y; left.z ^= right.z; left.w ^= right.w; return left; } //////////////////////////////////////////////////////////////////////////////// //! Scrypt core kernel for Fermi class devices. //! @param g_idata input data in global memory //! @param g_odata output data in global memory //////////////////////////////////////////////////////////////////////////////// template __global__ void fermi_scrypt_core_kernelA(uint32_t *g_idata, unsigned int N) { extern __shared__ unsigned char x[]; uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; int warpIdx = threadIdx.x / warpSize; int warpThread = threadIdx.x % warpSize; const unsigned int LOOKUP_GAP = 1; // variables supporting the large memory transaction magic unsigned int Y = warpThread/4; unsigned int Z = 4*(warpThread%4); // add block specific offsets int WARPS_PER_BLOCK = blockDim.x / 32; int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; g_idata += 32 * offset; uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z; // registers to store an entire work unit uint4 B[4], C[4]; uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; uint32_t *XX = X[warpIdx][warpThread]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&V[SCRATCH*wu])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+Z])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&V[SCRATCH*wu+16])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+16+Z])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); for (int i = 1; i < N; i++) { switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&V[SCRATCH*wu + i*32])) = *((ulonglong2*)XB[wu]); #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&V[SCRATCH*wu + i*32 + 16])) = *((ulonglong2*)XB[wu]); } } template __global__ void fermi_scrypt_core_kernelB(uint32_t *g_odata, unsigned int N) { extern __shared__ unsigned char x[]; uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; int warpIdx = threadIdx.x / warpSize; int warpThread = threadIdx.x % warpSize; const unsigned int LOOKUP_GAP = 1; // variables supporting the large memory transaction magic unsigned int Y = warpThread/4; unsigned int Z = 4*(warpThread%4); // add block specific offsets int WARPS_PER_BLOCK = blockDim.x / 32; int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; g_odata += 32 * offset; uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z; // registers to store an entire work unit uint4 B[4], C[4]; uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; uint32_t *XX = X[warpIdx][warpThread]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + (N-1)*32])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + (N-1)*32 + 16])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } for (int i = 0; i < N; i++) { XX[16] = 32 * (C[0].x & (N-1)); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z]])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] ^= *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z] + 16])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] ^= *((uint4*)&XX[4*idx]); switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } } #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]); #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]); } template __global__ void fermi_scrypt_core_kernelB_tex(uint32_t *g_odata, unsigned int N) { extern __shared__ unsigned char x[]; uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; int warpIdx = threadIdx.x / warpSize; int warpThread = threadIdx.x % warpSize; const unsigned int LOOKUP_GAP = 1; // variables supporting the large memory transaction magic unsigned int Y = warpThread/4; unsigned int Z = 4*(warpThread%4); // add block specific offsets int WARPS_PER_BLOCK = blockDim.x / 32; int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; g_odata += 32 * offset; // registers to store an entire work unit uint4 B[4], C[4]; uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; uint32_t *XX = X[warpIdx][warpThread]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + (N-1)*32 + Z)/4; *((uint4*)XB[wu]) = ((TEX_DIM == 1) ? tex1Dfetch(texRef1D_4_V, loc) : tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + (N-1)*32 + 16+Z)/4; *((uint4*)XB[wu]) = ((TEX_DIM == 1) ? tex1Dfetch(texRef1D_4_V, loc) : tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } for (int i = 0; i < N; i++) { XX[16] = 32 * (C[0].x & (N-1)); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + Z)/4; *((uint4*)XB[wu]) = ((TEX_DIM == 1) ? tex1Dfetch(texRef1D_4_V, loc) : tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] ^= *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + 16+Z)/4; *((uint4*)XB[wu]) = ((TEX_DIM == 1) ? tex1Dfetch(texRef1D_4_V, loc) : tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] ^= *((uint4*)&XX[4*idx]); switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } } #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]); #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]); } // // Lookup-Gap variations of the above functions // template __global__ void fermi_scrypt_core_kernelA_LG(uint32_t *g_idata, unsigned int N, unsigned int LOOKUP_GAP) { extern __shared__ unsigned char x[]; uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; int warpIdx = threadIdx.x / warpSize; int warpThread = threadIdx.x % warpSize; // variables supporting the large memory transaction magic unsigned int Y = warpThread/4; unsigned int Z = 4*(warpThread%4); // add block specific offsets int WARPS_PER_BLOCK = blockDim.x / 32; int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; g_idata += 32 * offset; uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z; // registers to store an entire work unit uint4 B[4], C[4]; uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; uint32_t *XX = X[warpIdx][warpThread]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&V[SCRATCH*wu])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+Z])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&V[SCRATCH*wu+16])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+16+Z])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); for (int i = 1; i < N; i++) { switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } if (i % LOOKUP_GAP == 0) { #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&V[SCRATCH*wu + (i/LOOKUP_GAP)*32])) = *((ulonglong2*)XB[wu]); #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&V[SCRATCH*wu + (i/LOOKUP_GAP)*32 + 16])) = *((ulonglong2*)XB[wu]); } } } template __global__ void fermi_scrypt_core_kernelB_LG(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP) { extern __shared__ unsigned char x[]; uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; int warpIdx = threadIdx.x / warpSize; int warpThread = threadIdx.x % warpSize; // variables supporting the large memory transaction magic unsigned int Y = warpThread/4; unsigned int Z = 4*(warpThread%4); // add block specific offsets int WARPS_PER_BLOCK = blockDim.x / 32; int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; g_odata += 32 * offset; uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z; // registers to store an entire work unit uint4 B[4], C[4]; uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; uint32_t *XX = X[warpIdx][warpThread]; uint32_t pos = (N-1)/LOOKUP_GAP; uint32_t loop = 1 + (N-1)-pos*LOOKUP_GAP; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + pos*32])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + pos*32 + 16])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); while (loop--) switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } for (int i = 0; i < N; i++) { uint32_t j = C[0].x & (N-1); uint32_t pos = j / LOOKUP_GAP; uint32_t loop = j - pos*LOOKUP_GAP; XX[16] = 32 * pos; uint4 b[4], c[4]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z]])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) b[idx] = *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z] + 16])); #pragma unroll 4 for (int idx=0; idx < 4; idx++) c[idx] = *((uint4*)&XX[4*idx]); while (loop--) switch(ALGO) { case A_SCRYPT: xor_salsa8(b, c); xor_salsa8(c, b); break; case A_SCRYPT_JANE: xor_chacha8(b, c); xor_chacha8(c, b); break; } #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] ^= b[idx]; #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] ^= c[idx]; switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } } #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]); #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]); } template __global__ void fermi_scrypt_core_kernelB_LG_tex(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP) { extern __shared__ unsigned char x[]; uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x; int warpIdx = threadIdx.x / warpSize; int warpThread = threadIdx.x % warpSize; // variables supporting the large memory transaction magic unsigned int Y = warpThread/4; unsigned int Z = 4*(warpThread%4); // add block specific offsets int WARPS_PER_BLOCK = blockDim.x / 32; int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP; g_odata += 32 * offset; // registers to store an entire work unit uint4 B[4], C[4]; uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z]; uint32_t *XX = X[warpIdx][warpThread]; uint32_t pos = (N-1)/LOOKUP_GAP; uint32_t loop = 1 + (N-1)-pos*LOOKUP_GAP; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + pos*32 + Z)/4; *((uint4*)XB[wu]) = ((TEX_DIM == 1) ? tex1Dfetch(texRef1D_4_V, loc) : tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + pos*32 + 16+Z)/4; *((uint4*)XB[wu]) = ((TEX_DIM == 1) ? tex1Dfetch(texRef1D_4_V, loc) : tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]); while (loop--) switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } for (int i = 0; i < N; i++) { uint32_t j = C[0].x & (N-1); uint32_t pos = j / LOOKUP_GAP; uint32_t loop = j - pos*LOOKUP_GAP; XX[16] = 32 * pos; uint4 b[4], c[4]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + Z)/4; *((uint4*)XB[wu]) = ((TEX_DIM == 1) ? tex1Dfetch(texRef1D_4_V, loc) : tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } #pragma unroll 4 for (int idx=0; idx < 4; idx++) b[idx] = *((uint4*)&XX[4*idx]); #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + 16+Z)/4; *((uint4*)XB[wu]) = ((TEX_DIM == 1) ? tex1Dfetch(texRef1D_4_V, loc) : tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); } #pragma unroll 4 for (int idx=0; idx < 4; idx++) c[idx] = *((uint4*)&XX[4*idx]); while (loop--) switch(ALGO) { case A_SCRYPT: xor_salsa8(b, c); xor_salsa8(c, b); break; case A_SCRYPT_JANE: xor_chacha8(b, c); xor_chacha8(c, b); break; } #pragma unroll 4 for (int idx=0; idx < 4; idx++) B[idx] ^= b[idx]; #pragma unroll 4 for (int idx=0; idx < 4; idx++) C[idx] ^= c[idx]; switch(ALGO) { case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break; case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break; } } #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]); #pragma unroll 4 for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx]; #pragma unroll 4 for (int wu=0; wu < 32; wu+=8) *((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]); }