/******************************************************************************* * luffa512 for 80-bytes input (with midstate precalc by klausT) */ #include #include #include #include "cuda_helper.h" static __constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding) static __constant__ uint32_t statebufferpre[8]; static __constant__ uint32_t statechainvpre[40]; #define MULT2(a,j) {\ tmp = a[7+(8*j)];\ a[7+(8*j)] = a[6+(8*j)];\ a[6+(8*j)] = a[5+(8*j)];\ a[5+(8*j)] = a[4+(8*j)];\ a[4+(8*j)] = a[3+(8*j)] ^ tmp;\ a[3+(8*j)] = a[2+(8*j)] ^ tmp;\ a[2+(8*j)] = a[1+(8*j)];\ a[1+(8*j)] = a[0+(8*j)] ^ tmp;\ a[0+(8*j)] = tmp;\ } #define TWEAK(a0,a1,a2,a3,j) { \ a0 = (a0<<(j))|(a0>>(32-j));\ a1 = (a1<<(j))|(a1>>(32-j));\ a2 = (a2<<(j))|(a2>>(32-j));\ a3 = (a3<<(j))|(a3>>(32-j));\ } #define STEP(c0,c1) { \ SUBCRUMB(chainv[0],chainv[1],chainv[2],chainv[3],tmp);\ SUBCRUMB(chainv[5],chainv[6],chainv[7],chainv[4],tmp);\ MIXWORD(chainv[0],chainv[4]);\ MIXWORD(chainv[1],chainv[5]);\ MIXWORD(chainv[2],chainv[6]);\ MIXWORD(chainv[3],chainv[7]);\ ADD_CONSTANT(chainv[0],chainv[4],c0,c1);\ } #define SUBCRUMB(a0,a1,a2,a3,a4)\ a4 = a0;\ a0 |= a1;\ a2 ^= a3;\ a1 = ~a1;\ a0 ^= a3;\ a3 &= a4;\ a1 ^= a3;\ a3 ^= a2;\ a2 &= a0;\ a0 = ~a0;\ a2 ^= a1;\ a1 |= a3;\ a4 ^= a1;\ a3 ^= a2;\ a2 &= a1;\ a1 ^= a0;\ a0 = a4; #define MIXWORD(a0,a4)\ a4 ^= a0;\ a0 = (a0<<2) | (a0>>(30));\ a0 ^= a4;\ a4 = (a4<<14) | (a4>>(18));\ a4 ^= a0;\ a0 = (a0<<10) | (a0>>(22));\ a0 ^= a4;\ a4 = (a4<<1) | (a4>>(31)); #define ADD_CONSTANT(a0,b0,c0,c1)\ a0 ^= c0;\ b0 ^= c1; /* initial values of chaining variables */ __constant__ uint32_t c_IV[40]; static const uint32_t h_IV[40] = { 0x6d251e69,0x44b051e0,0x4eaa6fb4,0xdbf78465, 0x6e292011,0x90152df4,0xee058139,0xdef610bb, 0xc3b44b95,0xd9d2f256,0x70eee9a0,0xde099fa3, 0x5d9b0557,0x8fc944b3,0xcf1ccf0e,0x746cd581, 0xf7efc89d,0x5dba5781,0x04016ce5,0xad659c05, 0x0306194f,0x666d1836,0x24aa230a,0x8b264ae7, 0x858075d5,0x36d79cce,0xe571f7d7,0x204b1f67, 0x35870c6a,0x57e9e923,0x14bcb808,0x7cde72ce, 0x6c68e9be,0x5ec41e22,0xc825b7c7,0xaffb4363, 0xf5df3999,0x0fc688f1,0xb07224cc,0x03e86cea}; __constant__ uint32_t c_CNS[80]; static const uint32_t h_CNS[80] = { 0x303994a6,0xe0337818,0xc0e65299,0x441ba90d, 0x6cc33a12,0x7f34d442,0xdc56983e,0x9389217f, 0x1e00108f,0xe5a8bce6,0x7800423d,0x5274baf4, 0x8f5b7882,0x26889ba7,0x96e1db12,0x9a226e9d, 0xb6de10ed,0x01685f3d,0x70f47aae,0x05a17cf4, 0x0707a3d4,0xbd09caca,0x1c1e8f51,0xf4272b28, 0x707a3d45,0x144ae5cc,0xaeb28562,0xfaa7ae2b, 0xbaca1589,0x2e48f1c1,0x40a46f3e,0xb923c704, 0xfc20d9d2,0xe25e72c1,0x34552e25,0xe623bb72, 0x7ad8818f,0x5c58a4a4,0x8438764a,0x1e38e2e7, 0xbb6de032,0x78e38b9d,0xedb780c8,0x27586719, 0xd9847356,0x36eda57f,0xa2c78434,0x703aace7, 0xb213afa5,0xe028c9bf,0xc84ebe95,0x44756f91, 0x4e608a22,0x7e8fce32,0x56d858fe,0x956548be, 0x343b138f,0xfe191be2,0xd0ec4e3d,0x3cb226e5, 0x2ceb4882,0x5944a28e,0xb3ad2208,0xa1c4c355, 0xf0d2e9e3,0x5090d577,0xac11d7fa,0x2d1925ab, 0x1bcb66f2,0xb46496ac,0x6f2d9bc9,0xd1925ab0, 0x78602649,0x29131ab6,0x8edae952,0x0fc053c3, 0x3b6ba548,0x3f014f0c,0xedae9520,0xfc053c31}; /***************************************************/ __device__ __forceinline__ void rnd512(uint32_t *statebuffer, uint32_t *statechainv) { int i,j; uint32_t t[40]; uint32_t chainv[8]; uint32_t tmp; #pragma unroll 8 for(i=0; i<8; i++) { t[i]=0; #pragma unroll 5 for(j=0; j<5; j++) t[i] ^= statechainv[i+8*j]; } MULT2(t, 0); #pragma unroll 5 for(j=0; j<5; j++) { #pragma unroll 8 for(i=0; i<8; i++) statechainv[i+8*j] ^= t[i]; } #pragma unroll 5 for(j=0; j<5; j++) { #pragma unroll 8 for(i=0; i<8; i++) t[i+8*j] = statechainv[i+8*j]; } #pragma unroll for(j=0; j<5; j++) MULT2(statechainv, j); #pragma unroll 5 for(j=0; j<5; j++) { #pragma unroll 8 for(i=0; i<8; i++) statechainv[8*j+i] ^= t[8*((j+1)%5)+i]; } #pragma unroll 5 for(j=0; j<5; j++) { #pragma unroll 8 for(i=0; i<8; i++) t[i+8*j] = statechainv[i+8*j]; } #pragma unroll for(j=0; j<5; j++) MULT2(statechainv, j); #pragma unroll 5 for(j=0; j<5; j++) { #pragma unroll 8 for(i=0; i<8; i++) statechainv[8*j+i] ^= t[8*((j+4)%5)+i]; } #pragma unroll 5 for(j=0; j<5; j++) { #pragma unroll 8 for(i=0; i<8; i++) statechainv[i+8*j] ^= statebuffer[i]; MULT2(statebuffer, 0); } #pragma unroll for(i=0; i<8; i++) chainv[i] = statechainv[i]; #pragma unroll for(i=0; i<8; i++) STEP(c_CNS[(2*i)], c_CNS[(2*i)+1]); #pragma unroll for(i=0; i<8; i++) { statechainv[i] = chainv[i]; chainv[i] = statechainv[i+8]; } TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],1); #pragma unroll for(i=0; i<8; i++) STEP(c_CNS[(2*i)+16], c_CNS[(2*i)+16+1]); #pragma unroll for(i=0; i<8; i++) { statechainv[i+8] = chainv[i]; chainv[i] = statechainv[i+16]; } TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],2); #pragma unroll for(i=0; i<8; i++) STEP(c_CNS[(2*i)+32],c_CNS[(2*i)+32+1]); #pragma unroll for(i=0; i<8; i++) { statechainv[i+16] = chainv[i]; chainv[i] = statechainv[i+24]; } TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],3); #pragma unroll for(i=0; i<8; i++) STEP(c_CNS[(2*i)+48],c_CNS[(2*i)+48+1]); #pragma unroll for(i=0; i<8; i++) { statechainv[i+24] = chainv[i]; chainv[i] = statechainv[i+32]; } TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],4); #pragma unroll for(i=0; i<8; i++) STEP(c_CNS[(2*i)+64],c_CNS[(2*i)+64+1]); #pragma unroll 8 for(i=0; i<8; i++) statechainv[i+32] = chainv[i]; } static void rnd512_cpu(uint32_t *statebuffer, uint32_t *statechainv) { int i, j; uint32_t t[40]; uint32_t chainv[8]; uint32_t tmp; for (i = 0; i<8; i++) { t[i] = statechainv[i]; for (j = 1; j<5; j++) t[i] ^= statechainv[i + 8 * j]; } MULT2(t, 0); for (j = 0; j<5; j++) { for (i = 0; i<8; i++) statechainv[i + 8 * j] ^= t[i]; } for (j = 0; j<5; j++) { for (i = 0; i<8; i++) t[i + 8 * j] = statechainv[i + 8 * j]; } for (j = 0; j<5; j++) MULT2(statechainv, j); for (j = 0; j<5; j++) { for (i = 0; i<8; i++) statechainv[8 * j + i] ^= t[8 * ((j + 1) % 5) + i]; } for (j = 0; j<5; j++) { for (i = 0; i<8; i++) t[i + 8 * j] = statechainv[i + 8 * j]; } for (j = 0; j<5; j++) MULT2(statechainv, j); for (j = 0; j<5; j++) { for (i = 0; i<8; i++) statechainv[8 * j + i] ^= t[8 * ((j + 4) % 5) + i]; } for (j = 0; j<5; j++) { for (i = 0; i<8; i++) statechainv[i + 8 * j] ^= statebuffer[i]; MULT2(statebuffer, 0); } for (i = 0; i<8; i++) chainv[i] = statechainv[i]; for (i = 0; i<8; i++) STEP(h_CNS[(2 * i)], h_CNS[(2 * i) + 1]); for (i = 0; i<8; i++) { statechainv[i] = chainv[i]; chainv[i] = statechainv[i + 8]; } TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 1); for (i = 0; i<8; i++) STEP(h_CNS[(2 * i) + 16], h_CNS[(2 * i) + 16 + 1]); for (i = 0; i<8; i++) { statechainv[i + 8] = chainv[i]; chainv[i] = statechainv[i + 16]; } TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 2); for (i = 0; i<8; i++) STEP(h_CNS[(2 * i) + 32], h_CNS[(2 * i) + 32 + 1]); for (i = 0; i<8; i++) { statechainv[i + 16] = chainv[i]; chainv[i] = statechainv[i + 24]; } TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 3); for (i = 0; i<8; i++) STEP(h_CNS[(2 * i) + 48], h_CNS[(2 * i) + 48 + 1]); for (i = 0; i<8; i++) { statechainv[i + 24] = chainv[i]; chainv[i] = statechainv[i + 32]; } TWEAK(chainv[4], chainv[5], chainv[6], chainv[7], 4); for (i = 0; i<8; i++) STEP(h_CNS[(2 * i) + 64], h_CNS[(2 * i) + 64 + 1]); for (i = 0; i<8; i++) statechainv[i + 32] = chainv[i]; } /***************************************************/ __device__ __forceinline__ void Update512(uint32_t* statebuffer, uint32_t *statechainv, const uint32_t *const __restrict__ data) { #pragma unroll for (int i = 0; i<8; i++) statebuffer[i] = cuda_swab32((data[i])); rnd512(statebuffer, statechainv); #pragma unroll for(int i=0; i<8; i++) statebuffer[i] = cuda_swab32((data[i+8])); rnd512(statebuffer, statechainv); #pragma unroll for(int i=0; i<4; i++) statebuffer[i] = cuda_swab32((data[i+16])); } /***************************************************/ __device__ __forceinline__ void finalization512(uint32_t* statebuffer, uint32_t *statechainv, uint32_t *b) { int i,j; statebuffer[4] = 0x80000000U; #pragma unroll 3 for(int i=5; i<8; i++) statebuffer[i] = 0; rnd512(statebuffer, statechainv); /*---- blank round with m=0 ----*/ #pragma unroll for(i=0; i<8; i++) statebuffer[i] =0; rnd512(statebuffer, statechainv); #pragma unroll for(i=0; i<8; i++) { b[i] = 0; #pragma unroll 5 for(j=0; j<5; j++) b[i] ^= statechainv[i+8*j]; b[i] = cuda_swab32((b[i])); } #pragma unroll for(i=0; i<8; i++) statebuffer[i]=0; rnd512(statebuffer, statechainv); #pragma unroll for(i=0; i<8; i++) { b[8+i] = 0; #pragma unroll 5 for(j=0; j<5; j++) b[8+i] ^= statechainv[i+8*j]; b[8+i] = cuda_swab32((b[8+i])); } } /***************************************************/ __global__ void qubit_luffa512_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *outputHash) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t nounce = startNounce + thread; union { uint64_t buf64[16]; uint32_t buf32[32]; } buff; #pragma unroll 8 for (int i=8; i < 16; i++) buff.buf64[i] = c_PaddedMessage80[i]; // die Nounce durch die thread-spezifische ersetzen buff.buf64[9] = REPLACE_HIDWORD(buff.buf64[9], cuda_swab32(nounce)); uint32_t statebuffer[8], statechainv[40]; #pragma unroll for (int i = 0; i<4; i++) statebuffer[i] = cuda_swab32(buff.buf32[i + 16]); #pragma unroll 4 for (int i = 4; i<8; i++) statebuffer[i] = statebufferpre[i]; #pragma unroll for (int i = 0; i<40; i++) statechainv[i] = statechainvpre[i]; uint32_t *outHash = &outputHash[thread * 16]; finalization512(statebuffer, statechainv, outHash); } } __host__ void qubit_luffa512_cpu_init(int thr_id, uint32_t threads) { CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_IV, h_IV, sizeof(h_IV), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_CNS, h_CNS, sizeof(h_CNS), 0, cudaMemcpyHostToDevice)); } __host__ void qubit_luffa512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_outputHash,int order) { const uint32_t threadsperblock = 256; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; qubit_luffa512_gpu_hash_80 <<>> (threads, startNounce, d_outputHash); } __host__ static void qubit_cpu_precalc(uint32_t* message) { uint32_t statebuffer[8]; uint32_t statechainv[40] = { 0x6d251e69, 0x44b051e0, 0x4eaa6fb4, 0xdbf78465, 0x6e292011, 0x90152df4, 0xee058139, 0xdef610bb, 0xc3b44b95, 0xd9d2f256, 0x70eee9a0, 0xde099fa3, 0x5d9b0557, 0x8fc944b3, 0xcf1ccf0e, 0x746cd581, 0xf7efc89d, 0x5dba5781, 0x04016ce5, 0xad659c05, 0x0306194f, 0x666d1836, 0x24aa230a, 0x8b264ae7, 0x858075d5, 0x36d79cce, 0xe571f7d7, 0x204b1f67, 0x35870c6a, 0x57e9e923, 0x14bcb808, 0x7cde72ce, 0x6c68e9be, 0x5ec41e22, 0xc825b7c7, 0xaffb4363, 0xf5df3999, 0x0fc688f1, 0xb07224cc, 0x03e86cea }; for (int i = 0; i<8; i++) statebuffer[i] = cuda_swab32(message[i]); rnd512_cpu(statebuffer, statechainv); for (int i = 0; i<8; i++) statebuffer[i] = cuda_swab32(message[i+8]); rnd512_cpu(statebuffer, statechainv); cudaMemcpyToSymbol(statebufferpre, statebuffer, sizeof(statebuffer), 0, cudaMemcpyHostToDevice); cudaMemcpyToSymbol(statechainvpre, statechainv, sizeof(statechainv), 0, cudaMemcpyHostToDevice); } __host__ void qubit_luffa512_cpu_setBlock_80(void *pdata) { unsigned char PaddedMessage[128]; memcpy(PaddedMessage, pdata, 80); memset(PaddedMessage+80, 0, 48); PaddedMessage[80] = 0x80; PaddedMessage[111] = 1; PaddedMessage[126] = 0x02; PaddedMessage[127] = 0x80; CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, sizeof(PaddedMessage), 0, cudaMemcpyHostToDevice)); qubit_cpu_precalc((uint32_t*) PaddedMessage); }