/** * Lbry Algo (sha-256 / sha-512 / ripemd) * * tpruvot and Provos Alexis - Jan 2017 * * Sponsored by LBRY.IO team */ #include #include extern "C" { #include #include } #include #include #define A 64 #define debug_cpu 0 extern "C" void lbry_hash(void* output, const void* input) { uint32_t _ALIGN(A) hashA[16]; uint32_t _ALIGN(A) hashB[8]; uint32_t _ALIGN(A) hashC[8]; sph_sha256_context ctx_sha256; sph_sha512_context ctx_sha512; sph_ripemd160_context ctx_ripemd; sph_sha256_init(&ctx_sha256); sph_sha256(&ctx_sha256, input, 112); sph_sha256_close(&ctx_sha256, hashA); sph_sha256(&ctx_sha256, hashA, 32); sph_sha256_close(&ctx_sha256, hashA); sph_sha512_init(&ctx_sha512); sph_sha512(&ctx_sha512, hashA, 32); sph_sha512_close(&ctx_sha512, hashA); sph_ripemd160_init(&ctx_ripemd); sph_ripemd160(&ctx_ripemd, hashA, 32); // sha512 low sph_ripemd160_close(&ctx_ripemd, hashB); if (debug_cpu) applog_hex(hashB, 20); sph_ripemd160(&ctx_ripemd, &hashA[8], 32); // sha512 high sph_ripemd160_close(&ctx_ripemd, hashC); if (debug_cpu) applog_hex(hashC, 20); sph_sha256(&ctx_sha256, hashB, 20); sph_sha256(&ctx_sha256, hashC, 20); sph_sha256_close(&ctx_sha256, hashA); if (debug_cpu) applog_hex(hashA,32); sph_sha256(&ctx_sha256, hashA, 32); sph_sha256_close(&ctx_sha256, hashA); memcpy(output, hashA, 32); } /* ############################################################################################################################### */ extern void lbry_sha256_init(int thr_id); extern void lbry_sha256_free(int thr_id); extern void lbry_sha256_setBlock_112(uint32_t *pdata); extern void lbry_sha256d_hash_112(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *d_outputHash); extern void lbry_sha512_init(int thr_id); extern void lbry_sha512_hash_32(int thr_id, uint32_t threads, uint32_t *d_hash); extern void lbry_sha256d_hash_final(int thr_id, uint32_t threads, uint32_t *d_inputHash, uint32_t *d_resNonce, const uint64_t target64); extern void lbry_sha256_setBlock_112_merged(uint32_t *pdata); extern void lbry_merged(int thr_id,uint32_t startNonce, uint32_t threads, uint32_t *d_resNonce, const uint64_t target64); static __inline uint32_t swab32_if(uint32_t val, bool iftrue) { return iftrue ? swab32(val) : val; } static bool init[MAX_GPUS] = { 0 }; static uint32_t *d_hash[MAX_GPUS]; static uint32_t *d_resNonce[MAX_GPUS]; // nonce position is different #define LBC_NONCE_OFT32 27 extern "C" int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(A) endiandata[28]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[LBC_NONCE_OFT32]; const int swap = 0; // to toggle nonce endian (need kernel change) const int dev_id = device_map[thr_id]; const bool merged_kernel = (device_sm[dev_id] > 500); int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 22 : 20; if (device_sm[dev_id] >= 600) intensity = 23; if (device_sm[dev_id] < 350) intensity = 18; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) { ptarget[7] = 0xf; } if (!init[thr_id]){ cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); cuda_get_arch(thr_id); if (CUDART_VERSION == 6050) { applog(LOG_ERR, "This lbry kernel is not compatible with CUDA 6.5!"); proper_exit(EXIT_FAILURE); } if (!merged_kernel) CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)64 * throughput)); CUDA_SAFE_CALL(cudaMalloc(&d_resNonce[thr_id], 2 * sizeof(uint32_t))); CUDA_LOG_ERROR(); init[thr_id] = true; } for (int i=0; i < LBC_NONCE_OFT32; i++) { be32enc(&endiandata[i], pdata[i]); } if (merged_kernel) lbry_sha256_setBlock_112_merged(endiandata); else lbry_sha256_setBlock_112(endiandata); cudaMemset(d_resNonce[thr_id], 0xFF, 2 * sizeof(uint32_t)); do { uint32_t resNonces[2] = { UINT32_MAX, UINT32_MAX }; // Hash with CUDA if (merged_kernel) { lbry_merged(thr_id, pdata[LBC_NONCE_OFT32], throughput, d_resNonce[thr_id], AS_U64(&ptarget[6])); } else { lbry_sha256d_hash_112(thr_id, throughput, pdata[LBC_NONCE_OFT32], d_hash[thr_id]); lbry_sha512_hash_32(thr_id, throughput, d_hash[thr_id]); lbry_sha256d_hash_final(thr_id, throughput, d_hash[thr_id], d_resNonce[thr_id], AS_U64(&ptarget[6])); } *hashes_done = pdata[LBC_NONCE_OFT32] - first_nonce + throughput; cudaMemcpy(resNonces, d_resNonce[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost); if (resNonces[0] != UINT32_MAX) { uint32_t _ALIGN(A) vhash[8]; const uint32_t Htarg = ptarget[7]; const uint32_t startNonce = pdata[LBC_NONCE_OFT32]; resNonces[0] += startNonce; endiandata[LBC_NONCE_OFT32] = swab32_if(resNonces[0], !swap); lbry_hash(vhash, endiandata); if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) { work->nonces[0] = swab32_if(resNonces[0], swap); work_set_target_ratio(work, vhash); work->valid_nonces = 1; if (resNonces[1] != UINT32_MAX) { resNonces[1] += startNonce; endiandata[LBC_NONCE_OFT32] = swab32_if(resNonces[1], !swap); lbry_hash(vhash, endiandata); work->nonces[1] = swab32_if(resNonces[1], swap); if (bn_hash_target_ratio(vhash, ptarget) > work->shareratio[0]) { // best first xchg(work->nonces[1], work->nonces[0]); work->sharediff[1] = work->sharediff[0]; work->shareratio[1] = work->shareratio[0]; work_set_target_ratio(work, vhash); } else { bn_set_target_ratio(work, vhash, 1); } work->valid_nonces++; } pdata[LBC_NONCE_OFT32] = max(work->nonces[0], work->nonces[1]); // next scan start return work->valid_nonces; } else if (vhash[7] > Htarg) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", resNonces[0]); cudaMemset(d_resNonce[thr_id], 0xFF, 2 * sizeof(uint32_t)); } } if ((uint64_t) throughput + pdata[LBC_NONCE_OFT32] >= max_nonce) { pdata[LBC_NONCE_OFT32] = max_nonce; break; } pdata[LBC_NONCE_OFT32] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[LBC_NONCE_OFT32] - first_nonce; return 0; } // cleanup void free_lbry(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); if(device_sm[device_map[thr_id]] <= 500) cudaFree(d_hash[thr_id]); cudaFree(d_resNonce[thr_id]); init[thr_id] = false; cudaDeviceSynchronize(); }