/* * HEFTY1 CPU-only cryptographic hash function * * Copyright (c) 2014, dbcc14 * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are those * of the authors and should not be interpreted as representing official policies, * either expressed or implied, of the FreeBSD Project. */ #include #include #include "hefty1.h" #ifdef WIN32 #define inline __inline #endif #define Min(A, B) (A <= B ? A : B) #define RoundFunc(ctx, A, B, C, D, E, F, G, H, W, K) \ { \ /* To thwart parallelism, Br modifies itself each time it's \ * called. This also means that calling it in different \ * orders yeilds different results. In C the order of \ * evaluation of function arguments and + operands are \ * unspecified (and depends on the compiler), so we must make \ * the order of Br calls explicit. \ */ \ uint32_t brG = Br(ctx, G); \ uint32_t tmp1 = Ch(E, Br(ctx, F), brG) + H + W + K; \ uint32_t tmp2 = tmp1 + Sigma1(Br(ctx, E)); \ uint32_t brC = Br(ctx, C); \ uint32_t brB = Br(ctx, B); \ uint32_t tmp3 = Ma(Br(ctx, A), brB, brC); \ uint32_t tmp4 = tmp3 + Sigma0(Br(ctx, A)); \ H = G; \ G = F; \ F = E; \ E = D + Br(ctx, tmp2); \ D = C; \ C = B; \ B = A; \ A = tmp2 + tmp4; \ } \ /* Nothing up my sleeve constants */ const static uint32_t K[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash values */ const static uint32_t H[HEFTY1_STATE_WORDS] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; static inline uint32_t Rr(uint32_t X, uint8_t n) { return (X >> n) | (X << (32 - n)); } static inline uint32_t Ch(uint32_t E, uint32_t F, uint32_t G) { return (E & F) ^ (~E & G); } static inline uint32_t Sigma1(uint32_t E) { return Rr(E, 6) ^ Rr(E, 11) ^ Rr(E, 25); } static inline uint32_t sigma1(uint32_t X) { return Rr(X, 17) ^ Rr(X, 19) ^ (X >> 10); } static inline uint32_t Ma(uint32_t A, uint32_t B, uint32_t C) { return (A & B) ^ (A & C) ^ (B & C); } static inline uint32_t Sigma0(uint32_t A) { return Rr(A, 2) ^ Rr(A, 13) ^ Rr(A, 22); } static inline uint32_t sigma0(uint32_t X) { return Rr(X, 7) ^ Rr(X, 18) ^ (X >> 3); } static inline uint32_t Reverse32(uint32_t n) { #if BYTE_ORDER == LITTLE_ENDIAN return n << 24 | (n & 0x0000ff00) << 8 | (n & 0x00ff0000) >> 8 | n >> 24; #else return n; #endif } static inline uint64_t Reverse64(uint64_t n) { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t a = n >> 32; uint32_t b = (n << 32) >> 32; return (uint64_t)Reverse32(b) << 32 | Reverse32(a); #else return n; #endif } /* Smoosh byte into nibble */ static inline uint8_t Smoosh4(uint8_t X) { return (X >> 4) ^ (X & 0xf); } /* Smoosh 32-bit word into 2-bits */ static inline uint8_t Smoosh2(uint32_t X) { uint16_t w = (X >> 16) ^ (X & 0xffff); uint8_t n = Smoosh4((w >> 8) ^ (w & 0xff)); return (n >> 2) ^ (n & 0x3); } #include static void Mangle(uint32_t *S) { uint8_t r0 = Smoosh4(S[0] >> 24); uint8_t r1 = Smoosh4(S[0] >> 16); uint8_t r2 = Smoosh4(S[0] >> 8); uint8_t r3 = Smoosh4(S[0] & 0xff); /* Diffuse */ S[1] ^= Rr(S[0], r0); switch (Smoosh2(S[1])) { case 0: S[2] ^= Rr(S[0], 1 + r0); break; case 1: S[2] += Rr(~S[0], 1 + r1); break; case 2: S[2] &= Rr(~S[0], 1 + r2); break; case 3: S[2] ^= Rr(S[0], 1 + r3); break; } switch (Smoosh2(S[1] ^ S[2])) { case 0: S[3] ^= Rr(S[0], 2 + r0); break; case 1: S[3] += Rr(~S[0], 2 + r1); break; case 2: S[3] &= Rr(~S[0], 2 + r2); break; case 3: S[3] ^= Rr(S[0], 2 + r3); break; } /* Compress */ S[0] ^= (S[1] ^ S[2]) + S[3]; } static void Absorb(uint32_t *S, uint32_t X) { uint32_t *R = S; R[0] ^= X; Mangle(S); } static uint32_t Squeeze(uint32_t *S) { uint32_t Y = S[0]; Mangle(S); return Y; } /* Branch, compress and serialize function */ static inline uint32_t Br(HEFTY1_CTX *ctx, uint32_t X) { uint32_t R = Squeeze(ctx->sponge); uint8_t r0 = R >> 8; uint8_t r1 = R & 0xff; uint32_t Y = 1 << (r0 % 32); switch (r1 % 4) { case 0: /* Do nothing */ break; case 1: return X & ~Y; case 2: return X | Y; case 3: return X ^ Y; } return X; } static void HashBlock(HEFTY1_CTX *ctx) { uint32_t A, B, C, D, E, F, G, H; uint32_t W[HEFTY1_BLOCK_BYTES]; int t; assert(ctx); A = ctx->h[0]; B = ctx->h[1]; C = ctx->h[2]; D = ctx->h[3]; E = ctx->h[4]; F = ctx->h[5]; G = ctx->h[6]; H = ctx->h[7]; t = 0; for (; t < 16; t++) { W[t] = Reverse32(((uint32_t *)&ctx->block[0])[t]); /* To host byte order */ Absorb(ctx->sponge, W[t] ^ K[t]); } for (t = 0; t < 16; t++) { Absorb(ctx->sponge, D ^ H); RoundFunc(ctx, A, B, C, D, E, F, G, H, W[t], K[t]); } for (t = 16; t < 64; t++) { Absorb(ctx->sponge, H + D); W[t] = sigma1(W[t - 2]) + W[t - 7] + sigma0(W[t - 15]) + W[t - 16]; RoundFunc(ctx, A, B, C, D, E, F, G, H, W[t], K[t]); } ctx->h[0] += A; ctx->h[1] += B; ctx->h[2] += C; ctx->h[3] += D; ctx->h[4] += E; ctx->h[5] += F; ctx->h[6] += G; ctx->h[7] += H; A = 0; B = 0; C = 0; D = 0; E = 0; F = 0; G = 0; H = 0; memset(W, 0, sizeof(W)); } /* Public interface */ void HEFTY1_Init(HEFTY1_CTX *ctx) { assert(ctx); memcpy(ctx->h, H, sizeof(ctx->h)); memset(ctx->block, 0, sizeof(ctx->block)); ctx->written = 0; memset(ctx->sponge, 0, sizeof(ctx->sponge)); } void HEFTY1_Update(HEFTY1_CTX *ctx, const void *buf, size_t len) { uint64_t read; assert(ctx); read = 0; while (len) { uint64_t end = ctx->written % HEFTY1_BLOCK_BYTES; uint64_t count = Min(len, HEFTY1_BLOCK_BYTES - end); memcpy(&ctx->block[end], &((unsigned char *)buf)[read], (size_t)count); len -= (size_t)count; read += count; ctx->written += count; if (!(ctx->written % HEFTY1_BLOCK_BYTES)) HashBlock(ctx); } } void HEFTY1_Final(unsigned char *digest, HEFTY1_CTX *ctx) { uint64_t used; uint64_t *len; int i; assert(digest); assert(ctx); /* Pad message (FIPS 180 Section 5.1.1) */ used = ctx->written % HEFTY1_BLOCK_BYTES; ctx->block[used++] = 0x80; /* Append 1 to end of message */ if (used > HEFTY1_BLOCK_BYTES - 8) { /* We have already written into the last 64bits, so * we must continue into the next block. */ memset(&ctx->block[used], 0, HEFTY1_BLOCK_BYTES - (size_t)used); HashBlock(ctx); used = 0; /* Create a new block (below) */ } /* All remaining bits to zero */ memset(&ctx->block[used], 0, HEFTY1_BLOCK_BYTES - 8 - (size_t)used); /* The last 64bits encode the length (in network byte order) */ len = (uint64_t *)&ctx->block[HEFTY1_BLOCK_BYTES - 8]; *len = Reverse64(ctx->written*8); HashBlock(ctx); /* Convert back to network byte order */ i = 0; for (; i < HEFTY1_STATE_WORDS; i++) ctx->h[i] = Reverse32(ctx->h[i]); memcpy(digest, ctx->h, sizeof(ctx->h)); memset(ctx, 0, sizeof(HEFTY1_CTX)); } unsigned char* HEFTY1(const unsigned char *buf, size_t len, unsigned char *digest) { HEFTY1_CTX ctx; static unsigned char m[HEFTY1_DIGEST_BYTES]; if (!digest) digest = m; HEFTY1_Init(&ctx); HEFTY1_Update(&ctx, buf, len); HEFTY1_Final(digest, &ctx); return digest; }