extern "C" { #include "sph/sph_keccak.h" #include "sph/sph_blake.h" #include "sph/sph_groestl.h" #include "sph/sph_jh.h" #include "sph/sph_skein.h" } #include "miner.h" #include "cuda_helper.h" #include "quark/cuda_quark.h" static uint32_t *d_hash[MAX_GPUS] = { 0 }; // Speicher zur Generierung der Noncevektoren für die bedingten Hashes static uint32_t *d_jackpotNonces[MAX_GPUS] = { 0 }; static uint32_t *d_branch1Nonces[MAX_GPUS] = { 0 }; static uint32_t *d_branch2Nonces[MAX_GPUS] = { 0 }; static uint32_t *d_branch3Nonces[MAX_GPUS] = { 0 }; extern void jackpot_keccak512_cpu_init(int thr_id, uint32_t threads); extern void jackpot_keccak512_cpu_setBlock(void *pdata, size_t inlen); extern void jackpot_keccak512_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int order); extern void jackpot_compactTest_cpu_init(int thr_id, uint32_t threads); extern void jackpot_compactTest_cpu_free(int thr_id); extern void jackpot_compactTest_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable, uint32_t *d_nonces1, uint32_t *nrm1, uint32_t *d_nonces2, uint32_t *nrm2, int order); extern uint32_t cuda_check_hash_branch(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order); // CPU HASH JHA v8 extern "C" void jackpothash(void *state, const void *input) { uint32_t hash[16]; unsigned int rnd; sph_blake512_context ctx_blake; sph_groestl512_context ctx_groestl; sph_jh512_context ctx_jh; sph_keccak512_context ctx_keccak; sph_skein512_context ctx_skein; sph_keccak512_init(&ctx_keccak); sph_keccak512 (&ctx_keccak, input, 80); sph_keccak512_close(&ctx_keccak, hash); for (rnd = 0; rnd < 3; rnd++) { if (hash[0] & 0x01) { sph_groestl512_init(&ctx_groestl); sph_groestl512 (&ctx_groestl, (&hash), 64); sph_groestl512_close(&ctx_groestl, (&hash)); } else { sph_skein512_init(&ctx_skein); sph_skein512 (&ctx_skein, (&hash), 64); sph_skein512_close(&ctx_skein, (&hash)); } if (hash[0] & 0x01) { sph_blake512_init(&ctx_blake); sph_blake512 (&ctx_blake, (&hash), 64); sph_blake512_close(&ctx_blake, (&hash)); } else { sph_jh512_init(&ctx_jh); sph_jh512 (&ctx_jh, (&hash), 64); sph_jh512_close(&ctx_jh, (&hash)); } } memcpy(state, hash, 32); } static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_jackpot(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) endiandata[22]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int dev_id = device_map[thr_id]; uint32_t throughput = cuda_default_throughput(thr_id, 1U << 20); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (opt_benchmark) ptarget[7] = 0x000f; if (!init[thr_id]) { cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } cuda_get_arch(thr_id); if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) { gpulog(LOG_ERR, thr_id, "Sorry, This algo is not supported by this GPU arch (SM 3.0 required)"); proper_exit(EXIT_CODE_CUDA_ERROR); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput)); jackpot_keccak512_cpu_init(thr_id, throughput); jackpot_compactTest_cpu_init(thr_id, throughput); quark_blake512_cpu_init(thr_id, throughput); quark_groestl512_cpu_init(thr_id, throughput); quark_jh512_cpu_init(thr_id, throughput); quark_skein512_cpu_init(thr_id, throughput); cuda_check_cpu_init(thr_id, throughput); cudaMalloc(&d_branch1Nonces[thr_id], (size_t) sizeof(uint32_t)*throughput*2); cudaMalloc(&d_branch2Nonces[thr_id], (size_t) sizeof(uint32_t)*throughput*2); cudaMalloc(&d_branch3Nonces[thr_id], (size_t) sizeof(uint32_t)*throughput*2); CUDA_SAFE_CALL(cudaMalloc(&d_jackpotNonces[thr_id], (size_t) sizeof(uint32_t)*throughput*2)); init[thr_id] = true; } for (int k=0; k < 22; k++) be32enc(&endiandata[k], pdata[k]); jackpot_keccak512_cpu_setBlock((void*)endiandata, 80); cuda_check_cpu_setTarget(ptarget); do { int order = 0; // erstes Keccak512 Hash mit CUDA jackpot_keccak512_cpu_hash(thr_id, throughput, pdata[19], d_hash[thr_id], order++); uint32_t nrm1, nrm2, nrm3; // Runde 1 (ohne Gröstl) jackpot_compactTest_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], NULL, d_branch1Nonces[thr_id], &nrm1, d_branch3Nonces[thr_id], &nrm3, order++); // verfolge den skein-pfad weiter quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); // noch schnell Blake & JH jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], d_branch1Nonces[thr_id], &nrm1, d_branch2Nonces[thr_id], &nrm2, order++); if (nrm1+nrm2 == nrm3) { quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); } // Runde 3 (komplett) // jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01) jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], d_branch1Nonces[thr_id], &nrm1, d_branch2Nonces[thr_id], &nrm2, order++); if (nrm1+nrm2 == nrm3) { quark_groestl512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); quark_skein512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); } // jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01) jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], d_branch1Nonces[thr_id], &nrm1, d_branch2Nonces[thr_id], &nrm2, order++); if (nrm1+nrm2 == nrm3) { quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); } // Runde 3 (komplett) // jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01) jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], d_branch1Nonces[thr_id], &nrm1, d_branch2Nonces[thr_id], &nrm2, order++); if (nrm1+nrm2 == nrm3) { quark_groestl512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); quark_skein512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); } // jackpotNonces in branch1/2 aufsplitten gemäss if (hash[0] & 0x01) jackpot_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], d_branch1Nonces[thr_id], &nrm1, d_branch2Nonces[thr_id], &nrm2, order++); if (nrm1+nrm2 == nrm3) { quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); } *hashes_done = pdata[19] - first_nonce + throughput; CUDA_LOG_ERROR(); work->nonces[0] = cuda_check_hash_branch(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); if (work->nonces[0] != UINT32_MAX) { const uint32_t Htarg = ptarget[7]; uint32_t _ALIGN(64) vhash[8]; be32enc(&endiandata[19], work->nonces[0]); // jackpothash function gibt die Zahl der Runden zurück jackpothash(vhash, endiandata); if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhash); #if 0 work->nonces[1] = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], 1); if (work->nonces[1] != 0) { be32enc(&endiandata[19], work->nonces[1]); jackpothash(vhash, endiandata); bn_set_target_ratio(work, vhash, 1); work->valid_nonces++; pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; } else { pdata[19] = work->nonces[0] + 1; // cursor } #else pdata[19] = work->nonces[0] + 1; // cursor #endif return work->valid_nonces; } else if (vhash[7] > Htarg) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); pdata[19] = work->nonces[0] + 1; continue; } } if ((uint64_t) throughput + pdata[19] >= max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); *hashes_done = pdata[19] - first_nonce; CUDA_LOG_ERROR(); return 0; } // cleanup extern "C" void free_jackpot(int thr_id) { if (!init[thr_id]) return; cudaThreadSynchronize(); cudaFree(d_branch1Nonces[thr_id]); cudaFree(d_branch2Nonces[thr_id]); cudaFree(d_branch3Nonces[thr_id]); cudaFree(d_jackpotNonces[thr_id]); quark_blake512_cpu_free(thr_id); quark_groestl512_cpu_free(thr_id); jackpot_compactTest_cpu_free(thr_id); cudaFree(d_hash[thr_id]); cuda_check_cpu_free(thr_id); CUDA_LOG_ERROR(); cudaDeviceSynchronize(); init[thr_id] = false; }