/** * Blake-256 Decred 180-Bytes input Cuda Kernel * * Tanguy Pruvot, Alexis Provos - Feb/Sep 2016 */ #include #include #include extern "C" { #include } /* threads per block */ #define TPB 640 /* max count of found nonces in one call (like sgminer) */ #define MAX_RESULTS 4 /* hash by cpu with blake 256 */ extern "C" void decred_hash(void *output, const void *input) { sph_blake256_context ctx; sph_blake256_set_rounds(14); sph_blake256_init(&ctx); sph_blake256(&ctx, input, 180); sph_blake256_close(&ctx, output); } #include #ifdef __INTELLISENSE__ #define __byte_perm(x, y, b) x #define atomicInc(p, max) (*p)++ #endif __constant__ uint32_t _ALIGN(16) c_h[2]; __constant__ uint32_t _ALIGN(16) c_data[32]; __constant__ uint32_t _ALIGN(16) c_xors[215]; /* Buffers of candidate nonce(s) */ static uint32_t *d_resNonce[MAX_GPUS]; static uint32_t *h_resNonce[MAX_GPUS]; #define ROR8(a) __byte_perm(a, 0, 0x0321) #define ROL16(a) __byte_perm(a, 0, 0x1032) /* macro bodies */ #define pxorGS(a,b,c,d) { \ v[a]+= c_xors[i++] + v[b]; \ v[d] = ROL16(v[d] ^ v[a]); \ v[c]+= v[d]; \ v[b] = ROTR32(v[b] ^ v[c], 12); \ v[a]+= c_xors[i++] + v[b]; \ v[d] = ROR8(v[d] ^ v[a]); \ v[c]+= v[d]; \ v[b] = ROTR32(v[b] ^ v[c], 7); \ } #define pxorGS2(a,b,c,d, a1,b1,c1,d1) {\ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \ v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \ v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ } #define pxory1GS2(a,b,c,d, a1,b1,c1,d1) { \ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \ v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= (c_xors[i++]^nonce) + v[b1]; \ v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ } #define pxory0GS2(a,b,c,d, a1,b1,c1,d1) { \ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \ v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ v[ a]+= (c_xors[i++]^nonce) + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \ v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ } #define pxorx1GS2(a,b,c,d, a1,b1,c1,d1) { \ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= (c_xors[i++]^nonce) + v[b1]; \ v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \ v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ } #define pxorx0GS2(a,b,c,d, a1,b1,c1,d1) { \ v[ a]+= (c_xors[i++]^nonce) + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \ v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \ v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \ v[ c]+= v[ d]; v[c1]+= v[d1]; \ v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \ } __global__ __launch_bounds__(TPB,1) void decred_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint32_t highTarget) { const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; if (thread < threads) { uint32_t v[16]; #pragma unroll for(int i=0; i<16; i+=4) { *(uint4*)&v[i] = *(uint4*)&c_data[i]; } const uint32_t nonce = startNonce + thread; v[ 1]+= (nonce ^ 0x13198A2E); v[13] = ROR8(v[13] ^ v[1]); v[ 9]+= v[13]; v[ 5] = ROTR32(v[5] ^ v[9], 7); int i = 0; v[ 1]+= c_xors[i++];// + v[ 6]; v[ 0]+= v[5]; v[12] = ROL16(v[12] ^ v[ 1]); v[15] = ROL16(v[15] ^ v[ 0]); v[11]+= v[12]; v[10]+= v[15]; v[ 6] = ROTR32(v[ 6] ^ v[11], 12); v[ 5] = ROTR32(v[5] ^ v[10], 12); v[ 1]+= c_xors[i++] + v[ 6]; v[ 0]+= c_xors[i++] + v[ 5]; v[12] = ROR8(v[12] ^ v[ 1]); v[15] = ROR8(v[15] ^ v[ 0]); v[11]+= v[12]; v[10]+= v[15]; v[ 6] = ROTR32(v[ 6] ^ v[11], 7); v[ 5] = ROTR32(v[ 5] ^ v[10], 7); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxory1GS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorx1GS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorx1GS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorx1GS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxory1GS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxory1GS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorx1GS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxory0GS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorx0GS2( 2, 7, 8, 13, 3, 4, 9, 14); pxory1GS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxory1GS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorx1GS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14); pxorx1GS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS( 2, 7, 8, 13); if ((c_h[1]^v[15]) == v[7]) { v[ 3] += c_xors[i++] + v[4]; v[14] = ROL16(v[14] ^ v[3]); v[ 9] += v[14]; v[ 4] = ROTR32(v[4] ^ v[9], 12); v[ 3] += c_xors[i++] + v[4]; v[14] = ROR8(v[14] ^ v[3]); if(cuda_swab32((c_h[0]^v[6]^v[14])) <= highTarget) { uint32_t pos = atomicInc(&resNonce[0], UINT32_MAX)+1; resNonce[pos] = nonce; return; } } } } __host__ void decred_cpu_setBlock_52(const uint32_t *input) { /* Precompute everything possible and pass it on constant memory */ const uint32_t z[16] = { 0x243F6A88U, 0x85A308D3U, 0x13198A2EU, 0x03707344U, 0xA4093822U, 0x299F31D0U, 0x082EFA98U, 0xEC4E6C89U, 0x452821E6U, 0x38D01377U, 0xBE5466CFU, 0x34E90C6CU, 0xC0AC29B7U, 0xC97C50DDU, 0x3F84D5B5U, 0xB5470917U }; int i=0; uint32_t _ALIGN(64) preXOR[215]; uint32_t _ALIGN(64) data[16]; uint32_t _ALIGN(64) m[16]; uint32_t _ALIGN(64) h[ 2]; sph_blake256_context ctx; sph_blake256_set_rounds(14); sph_blake256_init(&ctx); sph_blake256(&ctx, input, 128); data[ 0] = ctx.H[0]; data[ 1] = ctx.H[1]; data[ 2] = ctx.H[2]; data[ 3] = ctx.H[3]; data[ 4] = ctx.H[4]; data[ 5] = ctx.H[5]; data[ 8] = ctx.H[6]; data[12] = swab32(input[35]); data[13] = ctx.H[7]; // pre swab32 m[ 0] = swab32(input[32]); m[ 1] = swab32(input[33]); m[ 2] = swab32(input[34]); m[ 3] = 0; m[ 4] = swab32(input[36]); m[ 5] = swab32(input[37]); m[ 6] = swab32(input[38]); m[ 7] = swab32(input[39]); m[ 8] = swab32(input[40]); m[ 9] = swab32(input[41]); m[10] = swab32(input[42]); m[11] = swab32(input[43]); m[12] = swab32(input[44]); m[13] = 0x80000001; m[14] = 0; m[15] = 0x000005a0; h[ 0] = data[ 8]; h[ 1] = data[13]; CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_h,h, 8, 0, cudaMemcpyHostToDevice)); data[ 0]+= (m[ 0] ^ z[1]) + data[ 4]; data[12] = SPH_ROTR32(z[4] ^ SPH_C32(0x5A0) ^ data[ 0], 16); data[ 8] = z[0]+data[12]; data[ 4] = SPH_ROTR32(data[ 4] ^ data[ 8], 12); data[ 0]+= (m[ 1] ^ z[0]) + data[ 4]; data[12] = SPH_ROTR32(data[12] ^ data[ 0],8); data[ 8]+= data[12]; data[ 4] = SPH_ROTR32(data[ 4] ^ data[ 8], 7); data[ 1]+= (m[ 2] ^ z[3]) + data[ 5]; data[13] = SPH_ROTR32((z[5] ^ SPH_C32(0x5A0)) ^ data[ 1], 16); data[ 9] = z[1]+data[13]; data[ 5] = SPH_ROTR32(data[ 5] ^ data[ 9], 12); data[ 1]+= data[ 5]; //+nonce ^ ... data[ 2]+= (m[ 4] ^ z[5]) + h[ 0]; data[14] = SPH_ROTR32(z[6] ^ data[ 2],16); data[10] = z[2] + data[14]; data[ 6] = SPH_ROTR32(h[ 0] ^ data[10], 12); data[ 2]+= (m[ 5] ^ z[4]) + data[ 6]; data[14] = SPH_ROTR32(data[14] ^ data[ 2], 8); data[10]+= data[14]; data[ 6] = SPH_ROTR32(data[ 6] ^ data[10], 7); data[ 3]+= (m[ 6] ^ z[7]) + h[ 1]; data[15] = SPH_ROTR32(z[7] ^ data[ 3],16); data[11] = z[3] + data[15]; data[ 7] = SPH_ROTR32(h[ 1] ^ data[11], 12); data[ 3]+= (m[ 7] ^ z[6]) + data[ 7]; data[15] = SPH_ROTR32(data[15] ^ data[ 3],8); data[11]+= data[15]; data[ 7] = SPH_ROTR32(data[11] ^ data[ 7], 7); data[ 0]+= m[ 8] ^ z[9]; CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, 64, 0, cudaMemcpyHostToDevice)); #define precalcXORGS(x,y) { \ preXOR[i++]= (m[x] ^ z[y]); \ preXOR[i++]= (m[y] ^ z[x]); \ } #define precalcXORGS2(x,y,x1,y1){\ preXOR[i++] = (m[ x] ^ z[ y]);\ preXOR[i++] = (m[x1] ^ z[y1]);\ preXOR[i++] = (m[ y] ^ z[ x]);\ preXOR[i++] = (m[y1] ^ z[x1]);\ } precalcXORGS(10,11); preXOR[ 0]+=data[ 6]; preXOR[i++] = (m[9] ^ z[8]); precalcXORGS2(12,13,14,15); precalcXORGS2(14,10, 4, 8); precalcXORGS2( 9,15,13, 6); precalcXORGS2( 1,12, 0, 2); precalcXORGS2(11, 7, 5, 3); precalcXORGS2(11, 8,12, 0); precalcXORGS2( 5, 2,15,13); precalcXORGS2(10,14, 3, 6); precalcXORGS2( 7, 1, 9, 4); precalcXORGS2( 7, 9, 3, 1); precalcXORGS2(13,12,11,14); precalcXORGS2( 2, 6, 5,10); precalcXORGS2( 4, 0,15, 8); precalcXORGS2( 9, 0, 5, 7); precalcXORGS2( 2, 4,10,15); precalcXORGS2(14, 1,11,12); precalcXORGS2( 6, 8, 3,13); precalcXORGS2( 2,12, 6,10); precalcXORGS2( 0,11, 8, 3); precalcXORGS2( 4,13, 7, 5); precalcXORGS2(15,14, 1, 9); precalcXORGS2(12, 5, 1,15); precalcXORGS2(14,13, 4,10); precalcXORGS2( 0, 7, 6, 3); precalcXORGS2( 9, 2, 8,11); precalcXORGS2(13,11, 7,14); precalcXORGS2(12, 1, 3, 9); precalcXORGS2( 5, 0,15, 4); precalcXORGS2( 8, 6, 2,10); precalcXORGS2( 6,15,14, 9); precalcXORGS2(11, 3, 0, 8); precalcXORGS2(12, 2,13, 7); precalcXORGS2( 1, 4,10, 5); precalcXORGS2(10, 2, 8, 4); precalcXORGS2( 7, 6, 1, 5); precalcXORGS2(15,11, 9,14); precalcXORGS2( 3,12,13, 0); precalcXORGS2( 0, 1, 2, 3); precalcXORGS2( 4, 5, 6, 7); precalcXORGS2( 8, 9,10,11); precalcXORGS2(12,13,14,15); precalcXORGS2(14,10, 4, 8); precalcXORGS2( 9,15,13, 6); precalcXORGS2( 1,12, 0, 2); precalcXORGS2(11, 7, 5, 3); precalcXORGS2(11, 8,12, 0); precalcXORGS2( 5, 2,15,13); precalcXORGS2(10,14, 3, 6); precalcXORGS2( 7, 1, 9, 4); precalcXORGS2( 7, 9, 3, 1); precalcXORGS2(13,12,11,14); precalcXORGS2( 2, 6, 5,10); precalcXORGS( 4, 0); precalcXORGS(15, 8); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_xors, preXOR, 215*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); } /* ############################################################################################################################### */ static bool init[MAX_GPUS] = { 0 }; // nonce position is different in decred #define DCR_NONCE_OFT32 35 extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) endiandata[48]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t *pnonce = &pdata[DCR_NONCE_OFT32]; const uint32_t first_nonce = *pnonce; const uint32_t targetHigh = opt_benchmark ? 0x1ULL : ptarget[6]; const int dev_id = device_map[thr_id]; int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 29 : 25; if (device_sm[dev_id] < 350) intensity = 22; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); const dim3 grid((throughput + TPB-1)/(TPB)); const dim3 block(TPB); if (!init[thr_id]) { cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage (linux) cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); cuda_get_arch(thr_id); CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], MAX_RESULTS*sizeof(uint32_t)), -1); CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], MAX_RESULTS*sizeof(uint32_t)), -1); init[thr_id] = true; } memcpy(endiandata, pdata, 180); decred_cpu_setBlock_52(endiandata); cudaMemset(d_resNonce[thr_id], 0x00, sizeof(uint32_t)); do { uint32_t* resNonces = h_resNonce[thr_id]; if (resNonces[0]) cudaMemset(d_resNonce[thr_id], 0x00, sizeof(uint32_t)); // GPU HASH decred_gpu_hash_nonce <<>> (throughput, (*pnonce), d_resNonce[thr_id], targetHigh); *hashes_done = (*pnonce) - first_nonce + throughput; // first cell contains the valid nonces count cudaMemcpy(resNonces, d_resNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); if (resNonces[0]) { uint32_t _ALIGN(64) vhash[8]; cudaMemcpy(resNonces, d_resNonce[thr_id], (resNonces[0]+1)*sizeof(uint32_t), cudaMemcpyDeviceToHost); be32enc(&endiandata[DCR_NONCE_OFT32], resNonces[1]); decred_hash(vhash, endiandata); if (vhash[6] <= ptarget[6] && fulltest(vhash, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhash); work->nonces[0] = swab32(resNonces[1]); *pnonce = work->nonces[0]; // search for another nonce for(uint32_t n=2; n <= resNonces[0]; n++) { be32enc(&endiandata[DCR_NONCE_OFT32], resNonces[n]); decred_hash(vhash, endiandata); if (vhash[6] <= ptarget[6] && fulltest(vhash, ptarget)) { work->nonces[1] = swab32(resNonces[n]); if (bn_hash_target_ratio(vhash, ptarget) > work->shareratio[0]) { // we really want the best first ? depends... work->shareratio[1] = work->shareratio[0]; work->sharediff[1] = work->sharediff[0]; xchg(work->nonces[1], work->nonces[0]); work_set_target_ratio(work, vhash); work->valid_nonces++; } else if (work->valid_nonces == 1) { bn_set_target_ratio(work, vhash, 1); work->valid_nonces++; } work->valid_nonces = 2; // MAX_NONCES submit limited to 2 gpulog(LOG_DEBUG, thr_id, "multiple nonces 1:%08x (%g) %u:%08x (%g)", work->nonces[0], work->sharediff[0], n, work->nonces[1], work->sharediff[1]); } else if (vhash[6] > ptarget[6]) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result %u for %08x does not validate on CPU!", n, resNonces[n]); } } return work->valid_nonces; } else if (vhash[6] > ptarget[6]) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", resNonces[1]); } } *pnonce += throughput; } while (!work_restart[thr_id].restart && max_nonce > (uint64_t)throughput + (*pnonce)); *hashes_done = (*pnonce) - first_nonce; MyStreamSynchronize(NULL, 0, device_map[thr_id]); return 0; } // cleanup extern "C" void free_decred(int thr_id) { if (!init[thr_id]) return; cudaDeviceSynchronize(); cudaFreeHost(h_resNonce[thr_id]); cudaFree(d_resNonce[thr_id]); init[thr_id] = false; cudaDeviceSynchronize(); }