/** * KECCAK-256 CUDA optimised implementation, based on ccminer-alexis code */ #include extern "C" { #include #include } #include #include #define TPB52 1024 #define TPB50 384 #define NPT 2 #define NBN 2 static uint32_t *d_nonces[MAX_GPUS]; static uint32_t *h_nonces[MAX_GPUS]; __constant__ uint2 c_message48[6]; __constant__ uint2 c_mid[17]; __constant__ uint2 keccak_round_constants[24] = { { 0x00000001, 0x00000000 }, { 0x00008082, 0x00000000 }, { 0x0000808a, 0x80000000 }, { 0x80008000, 0x80000000 }, { 0x0000808b, 0x00000000 }, { 0x80000001, 0x00000000 }, { 0x80008081, 0x80000000 }, { 0x00008009, 0x80000000 }, { 0x0000008a, 0x00000000 }, { 0x00000088, 0x00000000 }, { 0x80008009, 0x00000000 }, { 0x8000000a, 0x00000000 }, { 0x8000808b, 0x00000000 }, { 0x0000008b, 0x80000000 }, { 0x00008089, 0x80000000 }, { 0x00008003, 0x80000000 }, { 0x00008002, 0x80000000 }, { 0x00000080, 0x80000000 }, { 0x0000800a, 0x00000000 }, { 0x8000000a, 0x80000000 }, { 0x80008081, 0x80000000 }, { 0x00008080, 0x80000000 }, { 0x80000001, 0x00000000 }, { 0x80008008, 0x80000000 } }; __device__ __forceinline__ uint2 xor3x(const uint2 a,const uint2 b,const uint2 c) { uint2 result; #if __CUDA_ARCH__ >= 500 && CUDA_VERSION >= 7050 asm ("lop3.b32 %0, %1, %2, %3, 0x96;" : "=r"(result.x) : "r"(a.x), "r"(b.x),"r"(c.x)); //0x96 = 0xF0 ^ 0xCC ^ 0xAA asm ("lop3.b32 %0, %1, %2, %3, 0x96;" : "=r"(result.y) : "r"(a.y), "r"(b.y),"r"(c.y)); //0x96 = 0xF0 ^ 0xCC ^ 0xAA #else result = a^b^c; #endif return result; } __device__ __forceinline__ uint2 chi(const uint2 a,const uint2 b,const uint2 c) { // keccak chi uint2 result; #if __CUDA_ARCH__ >= 500 && CUDA_VERSION >= 7050 asm ("lop3.b32 %0, %1, %2, %3, 0xD2;" : "=r"(result.x) : "r"(a.x), "r"(b.x),"r"(c.x)); //0xD2 = 0xF0 ^ ((~0xCC) & 0xAA) asm ("lop3.b32 %0, %1, %2, %3, 0xD2;" : "=r"(result.y) : "r"(a.y), "r"(b.y),"r"(c.y)); //0xD2 = 0xF0 ^ ((~0xCC) & 0xAA) #else result = a ^ (~b) & c; #endif return result; } __device__ __forceinline__ uint64_t xor5(uint64_t a, uint64_t b, uint64_t c, uint64_t d, uint64_t e) { uint64_t result; asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(d) ,"l"(e)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(c)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(b)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(a)); return result; } #if __CUDA_ARCH__ <= 500 __global__ __launch_bounds__(TPB50, 2) #else __global__ __launch_bounds__(TPB52, 1) #endif void keccak256_gpu_hash_80(uint32_t threads, uint32_t startNonce, uint32_t *resNounce, const uint2 highTarget) { uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; uint2 s[25], t[5], v, w, u[5]; #if __CUDA_ARCH__ > 500 uint64_t step = gridDim.x * blockDim.x; uint64_t maxNonce = startNonce + threads; for(uint64_t nounce = startNonce + thread; nounce 500 #pragma unroll 22 #else #pragma unroll 4 #endif for (int i = 1; i < 23; i++) { #pragma unroll for(int j=0;j<5;j++) { t[ j] = vectorize(xor5(devectorize(s[ j]),devectorize(s[j+5]),devectorize(s[j+10]),devectorize(s[j+15]),devectorize(s[j+20]))); } /*theta*/ #pragma unroll for(int j=0;j<5;j++) { u[j] = ROL2(t[j], 1); } s[ 4] = xor3x(s[ 4], t[3], u[0]);s[ 9] = xor3x(s[ 9], t[3], u[0]);s[14] = xor3x(s[14], t[3], u[0]);s[19] = xor3x(s[19], t[3], u[0]);s[24] = xor3x(s[24], t[3], u[0]); s[ 0] = xor3x(s[ 0], t[4], u[1]);s[ 5] = xor3x(s[ 5], t[4], u[1]);s[10] = xor3x(s[10], t[4], u[1]);s[15] = xor3x(s[15], t[4], u[1]);s[20] = xor3x(s[20], t[4], u[1]); s[ 1] = xor3x(s[ 1], t[0], u[2]);s[ 6] = xor3x(s[ 6], t[0], u[2]);s[11] = xor3x(s[11], t[0], u[2]);s[16] = xor3x(s[16], t[0], u[2]);s[21] = xor3x(s[21], t[0], u[2]); s[ 2] = xor3x(s[ 2], t[1], u[3]);s[ 7] = xor3x(s[ 7], t[1], u[3]);s[12] = xor3x(s[12], t[1], u[3]);s[17] = xor3x(s[17], t[1], u[3]);s[22] = xor3x(s[22], t[1], u[3]); s[ 3] = xor3x(s[ 3], t[2], u[4]);s[ 8] = xor3x(s[ 8], t[2], u[4]);s[13] = xor3x(s[13], t[2], u[4]);s[18] = xor3x(s[18], t[2], u[4]);s[23] = xor3x(s[23], t[2], u[4]); /*rho pi: b[..] = rotl(a[..] ^ d[...], ..)*/ v = s[ 1]; s[ 1] = ROL2(s[ 6],44); s[ 6] = ROL2(s[ 9],20); s[ 9] = ROL2(s[22],61); s[22] = ROL2(s[14],39); s[14] = ROL2(s[20],18); s[20] = ROL2(s[ 2],62); s[ 2] = ROL2(s[12],43); s[12] = ROL2(s[13],25); s[13] = ROL8(s[19]); s[19] = ROR8(s[23]); s[23] = ROL2(s[15],41); s[15] = ROL2(s[ 4],27); s[ 4] = ROL2(s[24],14); s[24] = ROL2(s[21], 2); s[21] = ROL2(s[ 8],55); s[ 8] = ROL2(s[16],45); s[16] = ROL2(s[ 5],36); s[ 5] = ROL2(s[ 3],28); s[ 3] = ROL2(s[18],21); s[18] = ROL2(s[17],15); s[17] = ROL2(s[11],10); s[11] = ROL2(s[ 7], 6); s[ 7] = ROL2(s[10], 3); s[10] = ROL2(v, 1); /* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ #pragma unroll for(int j=0;j<25;j+=5) { v=s[j];w=s[j + 1];s[j] = chi(s[j],s[j+1],s[j+2]);s[j+1] = chi(s[j+1],s[j+2],s[j+3]);s[j+2]=chi(s[j+2],s[j+3],s[j+4]);s[j+3]=chi(s[j+3],s[j+4],v);s[j+4]=chi(s[j+4],v,w); } /* iota: a[0,0] ^= round constant */ s[ 0] ^=keccak_round_constants[ i]; } /* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ #pragma unroll 5 for(int j=0;j<5;j++) { t[ j] = xor3x(xor3x(s[j+0],s[j+5],s[j+10]), s[j+15], s[j+20]); } s[24] = xor3x(s[24],t[3],ROL2(t[0],1)); s[18] = xor3x(s[18],t[2],ROL2(t[4],1)); s[ 0] = xor3x(s[ 0],t[4],ROL2(t[1],1)); /* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ s[24] = ROL2(s[24],14); s[18] = ROL2(s[18],21); if (devectorize(chi(s[18],s[24],s[ 0])) <= devectorize(highTarget)) { // if(chi(s[18].x,s[24].x,s[0].x)<=highTarget.x) { // if(chi(s[18].y,s[24].y,s[0].y)<=highTarget.y) { const uint32_t tmp = atomicExch(&resNounce[0], nounce); if (tmp != UINT32_MAX) resNounce[1] = tmp; // return; // } } } } __host__ void keccak256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t* resNonces, const uint2 highTarget) { uint32_t tpb; dim3 grid; if (device_sm[device_map[thr_id]] <= 500) { tpb = TPB50; grid.x = (threads + tpb-1)/tpb; } else { tpb = TPB52; grid.x = (threads + (NPT*tpb)-1)/(NPT*tpb); } const dim3 block(tpb); keccak256_gpu_hash_80<<>>(threads, startNonce, d_nonces[thr_id], highTarget); // cudaThreadSynchronize(); cudaMemcpy(h_nonces[thr_id], d_nonces[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost); memcpy(resNonces, h_nonces[thr_id], NBN*sizeof(uint32_t)); } #if 0 #if __CUDA_ARCH__ <= 500 __global__ __launch_bounds__(TPB50, 2) #else __global__ __launch_bounds__(TPB52, 1) #endif void keccak256_gpu_hash_32(uint32_t threads, uint2* outputHash) { uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; uint2 s[25], t[5], v, w, u[5]; if(thread < threads) { #pragma unroll 25 for (int i = 0; i<25; i++) { if (i<4) s[i] = __ldg(&outputHash[i*threads+thread]); else s[i] = make_uint2(0, 0); } s[4] = keccak_round_constants[ 0]; s[16] = make_uint2(0, 0x80000000); #if __CUDA_ARCH__ > 500 #pragma unroll #else #pragma unroll 4 #endif for (uint32_t i = 0; i < 23; i++) { /*theta*/ #pragma unroll 5 for(int j=0; j<5; j++) { t[ j] = vectorize(xor5(devectorize(s[ j]),devectorize(s[j+5]),devectorize(s[j+10]),devectorize(s[j+15]),devectorize(s[j+20]))); } /*theta*/ #pragma unroll 5 for(int j=0; j<5; j++) { u[j] = ROL2(t[j], 1); } s[ 4] = xor3x(s[ 4], t[3], u[0]);s[ 9] = xor3x(s[ 9], t[3], u[0]);s[14] = xor3x(s[14], t[3], u[0]);s[19] = xor3x(s[19], t[3], u[0]);s[24] = xor3x(s[24], t[3], u[0]); s[ 0] = xor3x(s[ 0], t[4], u[1]);s[ 5] = xor3x(s[ 5], t[4], u[1]);s[10] = xor3x(s[10], t[4], u[1]);s[15] = xor3x(s[15], t[4], u[1]);s[20] = xor3x(s[20], t[4], u[1]); s[ 1] = xor3x(s[ 1], t[0], u[2]);s[ 6] = xor3x(s[ 6], t[0], u[2]);s[11] = xor3x(s[11], t[0], u[2]);s[16] = xor3x(s[16], t[0], u[2]);s[21] = xor3x(s[21], t[0], u[2]); s[ 2] = xor3x(s[ 2], t[1], u[3]);s[ 7] = xor3x(s[ 7], t[1], u[3]);s[12] = xor3x(s[12], t[1], u[3]);s[17] = xor3x(s[17], t[1], u[3]);s[22] = xor3x(s[22], t[1], u[3]); s[ 3] = xor3x(s[ 3], t[2], u[4]);s[ 8] = xor3x(s[ 8], t[2], u[4]);s[13] = xor3x(s[13], t[2], u[4]);s[18] = xor3x(s[18], t[2], u[4]);s[23] = xor3x(s[23], t[2], u[4]); /*rho pi: b[..] = rotl(a[..] ^ d[...], ..)*/ v = s[ 1]; s[ 1] = ROL2(s[ 6],44); s[ 6] = ROL2(s[ 9],20); s[ 9] = ROL2(s[22],61); s[22] = ROL2(s[14],39); s[14] = ROL2(s[20],18); s[20] = ROL2(s[ 2],62); s[ 2] = ROL2(s[12],43); s[12] = ROL2(s[13],25); s[13] = ROL8(s[19]); s[19] = ROR8(s[23]); s[23] = ROL2(s[15],41); s[15] = ROL2(s[ 4],27); s[ 4] = ROL2(s[24],14); s[24] = ROL2(s[21], 2); s[21] = ROL2(s[ 8],55); s[ 8] = ROL2(s[16],45); s[16] = ROL2(s[ 5],36); s[ 5] = ROL2(s[ 3],28); s[ 3] = ROL2(s[18],21); s[18] = ROL2(s[17],15); s[17] = ROL2(s[11],10); s[11] = ROL2(s[ 7], 6); s[ 7] = ROL2(s[10], 3); s[10] = ROL2(v, 1); /* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ #pragma unroll 5 for(int j=0; j<25; j+=5) { v=s[j];w=s[j + 1]; s[j] = chi(v,w,s[j+2]); s[j+1] = chi(w,s[j+2],s[j+3]); s[j+2]=chi(s[j+2],s[j+3],s[j+4]); s[j+3]=chi(s[j+3],s[j+4],v); s[j+4]=chi(s[j+4],v,w); } /* iota: a[0,0] ^= round constant */ s[ 0] ^=keccak_round_constants[ i]; } /* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ #pragma unroll 5 for(int j=0;j<5;j++) { t[ j] = xor3x(xor3x(s[j+0],s[j+5],s[j+10]), s[j+15], s[j+20]); } /* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ #pragma unroll 5 for(int j=0;j<5;j++) { u[j] = ROL2(t[j],1); } /* thetarho pi: b[..] = rotl(a[..] ^ d[...], ..) //There's no need to perform theta and -store- the result since it's unique for each a[..]*/ s[ 4] = xor3x(s[24], t[3], u[0]); s[ 0] = xor3x(s[ 0], t[4], u[1]); s[ 1] = xor3x(s[ 6], t[0], u[2]); s[ 2] = xor3x(s[12], t[1], u[3]); s[ 3] = xor3x(s[18], t[2], u[4]); s[ 1] = ROR2(s[ 1],20); s[ 2] = ROR2(s[ 2],21); s[ 3] = ROL2(s[ 3],21); s[ 4] = ROL2(s[ 4],14); /* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ outputHash[0*threads+thread] = chi(s[ 0],s[ 1],s[ 2]) ^ keccak_round_constants[23]; outputHash[1*threads+thread] = chi(s[ 1],s[ 2],s[ 3]); outputHash[2*threads+thread] = chi(s[ 2],s[ 3],s[ 4]); outputHash[3*threads+thread] = chi(s[ 3],s[ 4],s[ 0]); } } __host__ void keccak256_cpu_hash_32(const int thr_id,const uint32_t threads, uint2* d_hash) { uint32_t tpb = TPB52; if (device_sm[device_map[thr_id]] == 500) tpb = TPB50; const dim3 grid((threads + tpb-1)/tpb); const dim3 block(tpb); keccak256_gpu_hash_32 <<>> (threads, d_hash); } #endif __host__ void keccak256_setBlock_80(uint64_t *endiandata) { uint64_t midstate[17], s[25]; uint64_t t[5], u[5]; s[10] = 1; //(uint64_t)make_uint2(1, 0); s[16] = ((uint64_t)1)<<63; //(uint64_t)make_uint2(0, 0x80000000); t[0] = endiandata[0] ^ endiandata[5] ^ s[10]; t[1] = endiandata[1] ^ endiandata[6] ^ s[16]; t[2] = endiandata[2] ^ endiandata[7]; t[3] = endiandata[3] ^ endiandata[8]; midstate[ 0] = ROTL64(t[1], 1); //u[0] -partial u[1] = t[ 0] ^ ROTL64(t[2], 1); //u[1] u[2] = t[ 1] ^ ROTL64(t[3], 1); //u[2] midstate[ 1] = t[ 2]; //u[3] -partial midstate[ 2] = t[ 3] ^ ROTL64(t[0], 1); //u[4] midstate[ 3] = ROTL64(endiandata[1]^u[1], 1); //v midstate[ 4] = ROTL64(endiandata[6]^u[1], 44); midstate[ 5] = ROTL64(endiandata[2]^u[2], 62); midstate[ 6] = ROTL64(u[2], 61); midstate[ 7] = ROTL64(midstate[2], 39); midstate[ 8] = ROTL64(u[2], 43); midstate[ 9] = ROTL64(midstate[2], 8); midstate[10] = ROTL64(endiandata[4]^midstate[ 2],27); midstate[11] = ROTL64(midstate[2], 14); midstate[12] = ROTL64(u[1], 2); midstate[13] = ROTL64(s[16] ^ u[1], 45); midstate[14] = ROTL64(u[2],15); midstate[15] = ROTL64(u[1],10); midstate[16] = ROTL64(endiandata[7]^u[2], 6); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_mid, midstate,17*sizeof(uint64_t), 0, cudaMemcpyHostToDevice)); // pass only what's needed uint64_t message48[6]; message48[0] = endiandata[9]; message48[1] = endiandata[4]; message48[2] = endiandata[8]; message48[3] = endiandata[5]; message48[4] = endiandata[3]; message48[5] = endiandata[0]; CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_message48, message48, 6*sizeof(uint64_t), 0, cudaMemcpyHostToDevice)); } __host__ void keccak256_cpu_init(int thr_id) { CUDA_SAFE_CALL(cudaMalloc(&d_nonces[thr_id], NBN*sizeof(uint32_t))); //CUDA_SAFE_CALL(cudaMallocHost(&h_nonces[thr_id], NBN*sizeof(uint32_t))); h_nonces[thr_id] = (uint32_t*) malloc(NBN * sizeof(uint32_t)); if(h_nonces[thr_id] == NULL) { gpulog(LOG_ERR,thr_id,"Host memory allocation failed"); exit(EXIT_FAILURE); } } __host__ void keccak256_setOutput(int thr_id) { CUDA_SAFE_CALL(cudaMemset(d_nonces[thr_id], 0xff, NBN*sizeof(uint32_t))); } __host__ void keccak256_cpu_free(int thr_id) { cudaFree(d_nonces[thr_id]); //cudaFreeHost(h_nonces[thr_id]); free(h_nonces[thr_id]); }