#include #define SPH_C32(x) ((uint32_t)(x ## U)) #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF)) #include "cuda_helper.h" static uint32_t *h_GNonces[MAX_GPUS]; static uint32_t *d_GNonces[MAX_GPUS]; static unsigned int* d_textures[MAX_GPUS][8]; __constant__ uint32_t pTarget[8]; #define C32e(x) \ ((SPH_C32(x) >> 24) \ | ((SPH_C32(x) >> 8) & SPH_C32(0x0000FF00)) \ | ((SPH_C32(x) << 8) & SPH_C32(0x00FF0000)) \ | ((SPH_C32(x) << 24) & SPH_C32(0xFF000000))) #define PC32up(j, r) ((uint32_t)((j) + (r))) #define PC32dn(j, r) 0 #define QC32up(j, r) 0xFFFFFFFF #define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24))) #define B32_0(x) __byte_perm(x, 0, 0x4440) //((x) & 0xFF) #define B32_1(x) __byte_perm(x, 0, 0x4441) //(((x) >> 8) & 0xFF) #define B32_2(x) __byte_perm(x, 0, 0x4442) //(((x) >> 16) & 0xFF) #define B32_3(x) __byte_perm(x, 0, 0x4443) //((x) >> 24) #define MAXWELL_OR_FERMI 1 #if MAXWELL_OR_FERMI #define USE_SHARED 1 // Maxwell and Fermi cards get the best speed with SHARED access it seems. #if USE_SHARED #define T0up(x) (*((uint32_t*)mixtabs + ( (x)))) #define T0dn(x) (*((uint32_t*)mixtabs + (256+(x)))) #define T1up(x) (*((uint32_t*)mixtabs + (512+(x)))) #define T1dn(x) (*((uint32_t*)mixtabs + (768+(x)))) #define T2up(x) (*((uint32_t*)mixtabs + (1024+(x)))) #define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x)))) #define T3up(x) (*((uint32_t*)mixtabs + (1536+(x)))) #define T3dn(x) (*((uint32_t*)mixtabs + (1792+(x)))) #else #define T0up(x) tex1Dfetch(t0up2, x) #define T0dn(x) tex1Dfetch(t0dn2, x) #define T1up(x) tex1Dfetch(t1up2, x) #define T1dn(x) tex1Dfetch(t1dn2, x) #define T2up(x) tex1Dfetch(t2up2, x) #define T2dn(x) tex1Dfetch(t2dn2, x) #define T3up(x) tex1Dfetch(t3up2, x) #define T3dn(x) tex1Dfetch(t3dn2, x) #endif #else #define USE_SHARED 1 // a healthy mix between shared and textured access provides the highest speed on Compute 3.0 and 3.5! #define T0up(x) (*((uint32_t*)mixtabs + ( (x)))) #define T0dn(x) tex1Dfetch(t0dn2, x) #define T1up(x) tex1Dfetch(t1up2, x) #define T1dn(x) (*((uint32_t*)mixtabs + (768+(x)))) #define T2up(x) tex1Dfetch(t2up2, x) #define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x)))) #define T3up(x) (*((uint32_t*)mixtabs + (1536+(x)))) #define T3dn(x) tex1Dfetch(t3dn2, x) #endif static texture t0up2; static texture t0dn2; static texture t1up2; static texture t1dn2; static texture t2up2; static texture t2dn2; static texture t3up2; static texture t3dn2; #define RSTT(d0, d1, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \ t[d0] = T0up(B32_0(a[b0])) \ ^ T1up(B32_1(a[b1])) \ ^ T2up(B32_2(a[b2])) \ ^ T3up(B32_3(a[b3])) \ ^ T0dn(B32_0(a[b4])) \ ^ T1dn(B32_1(a[b5])) \ ^ T2dn(B32_2(a[b6])) \ ^ T3dn(B32_3(a[b7])); \ t[d1] = T0dn(B32_0(a[b0])) \ ^ T1dn(B32_1(a[b1])) \ ^ T2dn(B32_2(a[b2])) \ ^ T3dn(B32_3(a[b3])) \ ^ T0up(B32_0(a[b4])) \ ^ T1up(B32_1(a[b5])) \ ^ T2up(B32_2(a[b6])) \ ^ T3up(B32_3(a[b7])); \ } while (0) extern uint32_t T0up_cpu[]; extern uint32_t T0dn_cpu[]; extern uint32_t T1up_cpu[]; extern uint32_t T1dn_cpu[]; extern uint32_t T2up_cpu[]; extern uint32_t T2dn_cpu[]; extern uint32_t T3up_cpu[]; extern uint32_t T3dn_cpu[]; __device__ __forceinline__ void groestl256_perm_P(uint32_t thread,uint32_t *a, char *mixtabs) { #pragma unroll 10 for (int r = 0; r<10; r++) { uint32_t t[16]; a[0x0] ^= PC32up(0x00, r); a[0x2] ^= PC32up(0x10, r); a[0x4] ^= PC32up(0x20, r); a[0x6] ^= PC32up(0x30, r); a[0x8] ^= PC32up(0x40, r); a[0xA] ^= PC32up(0x50, r); a[0xC] ^= PC32up(0x60, r); a[0xE] ^= PC32up(0x70, r); RSTT(0x0, 0x1, a, 0x0, 0x2, 0x4, 0x6, 0x9, 0xB, 0xD, 0xF); RSTT(0x2, 0x3, a, 0x2, 0x4, 0x6, 0x8, 0xB, 0xD, 0xF, 0x1); RSTT(0x4, 0x5, a, 0x4, 0x6, 0x8, 0xA, 0xD, 0xF, 0x1, 0x3); RSTT(0x6, 0x7, a, 0x6, 0x8, 0xA, 0xC, 0xF, 0x1, 0x3, 0x5); RSTT(0x8, 0x9, a, 0x8, 0xA, 0xC, 0xE, 0x1, 0x3, 0x5, 0x7); RSTT(0xA, 0xB, a, 0xA, 0xC, 0xE, 0x0, 0x3, 0x5, 0x7, 0x9); RSTT(0xC, 0xD, a, 0xC, 0xE, 0x0, 0x2, 0x5, 0x7, 0x9, 0xB); RSTT(0xE, 0xF, a, 0xE, 0x0, 0x2, 0x4, 0x7, 0x9, 0xB, 0xD); #pragma unroll 16 for (int k = 0; k<16; k++) a[k] = t[k]; } } __device__ __forceinline__ void groestl256_perm_Q(uint32_t thread, uint32_t *a, char *mixtabs) { #pragma unroll for (int r = 0; r<10; r++) { uint32_t t[16]; a[0x0] ^= QC32up(0x00, r); a[0x1] ^= QC32dn(0x00, r); a[0x2] ^= QC32up(0x10, r); a[0x3] ^= QC32dn(0x10, r); a[0x4] ^= QC32up(0x20, r); a[0x5] ^= QC32dn(0x20, r); a[0x6] ^= QC32up(0x30, r); a[0x7] ^= QC32dn(0x30, r); a[0x8] ^= QC32up(0x40, r); a[0x9] ^= QC32dn(0x40, r); a[0xA] ^= QC32up(0x50, r); a[0xB] ^= QC32dn(0x50, r); a[0xC] ^= QC32up(0x60, r); a[0xD] ^= QC32dn(0x60, r); a[0xE] ^= QC32up(0x70, r); a[0xF] ^= QC32dn(0x70, r); RSTT(0x0, 0x1, a, 0x2, 0x6, 0xA, 0xE, 0x1, 0x5, 0x9, 0xD); RSTT(0x2, 0x3, a, 0x4, 0x8, 0xC, 0x0, 0x3, 0x7, 0xB, 0xF); RSTT(0x4, 0x5, a, 0x6, 0xA, 0xE, 0x2, 0x5, 0x9, 0xD, 0x1); RSTT(0x6, 0x7, a, 0x8, 0xC, 0x0, 0x4, 0x7, 0xB, 0xF, 0x3); RSTT(0x8, 0x9, a, 0xA, 0xE, 0x2, 0x6, 0x9, 0xD, 0x1, 0x5); RSTT(0xA, 0xB, a, 0xC, 0x0, 0x4, 0x8, 0xB, 0xF, 0x3, 0x7); RSTT(0xC, 0xD, a, 0xE, 0x2, 0x6, 0xA, 0xD, 0x1, 0x5, 0x9); RSTT(0xE, 0xF, a, 0x0, 0x4, 0x8, 0xC, 0xF, 0x3, 0x7, 0xB); #pragma unroll for (int k = 0; k<16; k++) a[k] = t[k]; } } __global__ __launch_bounds__(256,1) void groestl256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash, uint32_t *resNonces) { #if USE_SHARED extern __shared__ char mixtabs[]; if (threadIdx.x < 256) { *((uint32_t*)mixtabs + (threadIdx.x)) = tex1Dfetch(t0up2, threadIdx.x); *((uint32_t*)mixtabs + (256 + threadIdx.x)) = tex1Dfetch(t0dn2, threadIdx.x); *((uint32_t*)mixtabs + (512 + threadIdx.x)) = tex1Dfetch(t1up2, threadIdx.x); *((uint32_t*)mixtabs + (768 + threadIdx.x)) = tex1Dfetch(t1dn2, threadIdx.x); *((uint32_t*)mixtabs + (1024 + threadIdx.x)) = tex1Dfetch(t2up2, threadIdx.x); *((uint32_t*)mixtabs + (1280 + threadIdx.x)) = tex1Dfetch(t2dn2, threadIdx.x); *((uint32_t*)mixtabs + (1536 + threadIdx.x)) = tex1Dfetch(t3up2, threadIdx.x); *((uint32_t*)mixtabs + (1792 + threadIdx.x)) = tex1Dfetch(t3dn2, threadIdx.x); } __syncthreads(); #endif uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { // GROESTL uint32_t message[16]; uint32_t state[16]; #pragma unroll for (int k = 0; k<4; k++) LOHI(message[2*k], message[2*k+1], outputHash[k*threads+thread]); #pragma unroll for (int k = 9; k<15; k++) message[k] = 0; message[8] = 0x80; message[15] = 0x01000000; #pragma unroll 16 for (int u = 0; u<16; u++) state[u] = message[u]; state[15] ^= 0x10000; // Perm #if USE_SHARED groestl256_perm_P(thread, state, mixtabs); state[15] ^= 0x10000; groestl256_perm_Q(thread, message, mixtabs); #else groestl256_perm_P(thread, state, NULL); state[15] ^= 0x10000; groestl256_perm_P(thread, message, NULL); #endif #pragma unroll 16 for (int u = 0; u<16; u++) state[u] ^= message[u]; #pragma unroll 16 for (int u = 0; u<16; u++) message[u] = state[u]; #if USE_SHARED groestl256_perm_P(thread, message, mixtabs); #else groestl256_perm_P(thread, message, NULL); #endif state[14] ^= message[14]; state[15] ^= message[15]; uint32_t nonce = startNounce + thread; if (state[15] <= pTarget[7]) { atomicMin(&resNonces[1], resNonces[0]); atomicMin(&resNonces[0], nonce); } } } #define texDef(id, texname, texmem, texsource, texsize) { \ unsigned int *texmem; \ cudaMalloc(&texmem, texsize); \ d_textures[thr_id][id] = texmem; \ cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \ texname.normalized = 0; \ texname.filterMode = cudaFilterModePoint; \ texname.addressMode[0] = cudaAddressModeClamp; \ { cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(); \ cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); \ } \ } __host__ void groestl256_cpu_init(int thr_id, uint32_t threads) { // Texturen mit obigem Makro initialisieren texDef(0, t0up2, d_T0up, T0up_cpu, sizeof(uint32_t) * 256); texDef(1, t0dn2, d_T0dn, T0dn_cpu, sizeof(uint32_t) * 256); texDef(2, t1up2, d_T1up, T1up_cpu, sizeof(uint32_t) * 256); texDef(3, t1dn2, d_T1dn, T1dn_cpu, sizeof(uint32_t) * 256); texDef(4, t2up2, d_T2up, T2up_cpu, sizeof(uint32_t) * 256); texDef(5, t2dn2, d_T2dn, T2dn_cpu, sizeof(uint32_t) * 256); texDef(6, t3up2, d_T3up, T3up_cpu, sizeof(uint32_t) * 256); texDef(7, t3dn2, d_T3dn, T3dn_cpu, sizeof(uint32_t) * 256); cudaMalloc(&d_GNonces[thr_id], 2*sizeof(uint32_t)); cudaMallocHost(&h_GNonces[thr_id], 2*sizeof(uint32_t)); } __host__ void groestl256_cpu_free(int thr_id) { for (int i=0; i<8; i++) cudaFree(d_textures[thr_id][i]); cudaFree(d_GNonces[thr_id]); cudaFreeHost(h_GNonces[thr_id]); } __host__ uint32_t groestl256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order) { uint32_t result = UINT32_MAX; cudaMemset(d_GNonces[thr_id], 0xff, 2*sizeof(uint32_t)); const uint32_t threadsperblock = 256; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); #if USE_SHARED size_t shared_size = 8 * 256 * sizeof(uint32_t); #else size_t shared_size = 0; #endif groestl256_gpu_hash_32<<>>(threads, startNounce, d_outputHash, d_GNonces[thr_id]); MyStreamSynchronize(NULL, order, thr_id); // get first found nonce cudaMemcpy(h_GNonces[thr_id], d_GNonces[thr_id], 1*sizeof(uint32_t), cudaMemcpyDeviceToHost); result = *h_GNonces[thr_id]; return result; } __host__ uint32_t groestl256_getSecNonce(int thr_id, int num) { uint32_t results[2]; memset(results, 0xFF, sizeof(results)); cudaMemcpy(results, d_GNonces[thr_id], sizeof(results), cudaMemcpyDeviceToHost); if (results[1] == results[0]) return UINT32_MAX; return results[num]; } __host__ void groestl256_setTarget(const void *pTargetIn) { cudaMemcpyToSymbol(pTarget, pTargetIn, 32, 0, cudaMemcpyHostToDevice); }