|
|
|
@ -1,71 +1,26 @@
@@ -1,71 +1,26 @@
|
|
|
|
|
/** |
|
|
|
|
* Lyra2 (v1) cuda implementation based on djm34 work - SM 5/5.2 |
|
|
|
|
* tpruvot@github 2015 |
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
#include <stdio.h> |
|
|
|
|
#include <memory.h> |
|
|
|
|
|
|
|
|
|
#include "cuda_helper.h" |
|
|
|
|
|
|
|
|
|
#define TPB 160 |
|
|
|
|
|
|
|
|
|
static __constant__ uint2 blake2b_IV[8] = { |
|
|
|
|
{ 0xf3bcc908, 0x6a09e667 }, |
|
|
|
|
{ 0x84caa73b, 0xbb67ae85 }, |
|
|
|
|
{ 0xfe94f82b, 0x3c6ef372 }, |
|
|
|
|
{ 0x5f1d36f1, 0xa54ff53a }, |
|
|
|
|
{ 0xade682d1, 0x510e527f }, |
|
|
|
|
{ 0x2b3e6c1f, 0x9b05688c }, |
|
|
|
|
{ 0xfb41bd6b, 0x1f83d9ab }, |
|
|
|
|
{ 0x137e2179, 0x5be0cd19 } |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
#define reduceDuplexRow(rowIn, rowInOut, rowOut) { \ |
|
|
|
|
for (int i = 0; i < 8; i++) { \ |
|
|
|
|
for (int j = 0; j < 12; j++) \ |
|
|
|
|
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
for (int j = 0; j < 12; j++) \ |
|
|
|
|
Matrix[j + 12 * i][rowOut] ^= state[j]; \ |
|
|
|
|
Matrix[0 + 12 * i][rowInOut] ^= state[11]; \ |
|
|
|
|
Matrix[1 + 12 * i][rowInOut] ^= state[0]; \ |
|
|
|
|
Matrix[2 + 12 * i][rowInOut] ^= state[1]; \ |
|
|
|
|
Matrix[3 + 12 * i][rowInOut] ^= state[2]; \ |
|
|
|
|
Matrix[4 + 12 * i][rowInOut] ^= state[3]; \ |
|
|
|
|
Matrix[5 + 12 * i][rowInOut] ^= state[4]; \ |
|
|
|
|
Matrix[6 + 12 * i][rowInOut] ^= state[5]; \ |
|
|
|
|
Matrix[7 + 12 * i][rowInOut] ^= state[6]; \ |
|
|
|
|
Matrix[8 + 12 * i][rowInOut] ^= state[7]; \ |
|
|
|
|
Matrix[9 + 12 * i][rowInOut] ^= state[8]; \ |
|
|
|
|
Matrix[10+ 12 * i][rowInOut] ^= state[9]; \ |
|
|
|
|
Matrix[11+ 12 * i][rowInOut] ^= state[10]; \ |
|
|
|
|
} \ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#define absorbblock(in) { \ |
|
|
|
|
state[0] ^= Matrix[0][in]; \ |
|
|
|
|
state[1] ^= Matrix[1][in]; \ |
|
|
|
|
state[2] ^= Matrix[2][in]; \ |
|
|
|
|
state[3] ^= Matrix[3][in]; \ |
|
|
|
|
state[4] ^= Matrix[4][in]; \ |
|
|
|
|
state[5] ^= Matrix[5][in]; \ |
|
|
|
|
state[6] ^= Matrix[6][in]; \ |
|
|
|
|
state[7] ^= Matrix[7][in]; \ |
|
|
|
|
state[8] ^= Matrix[8][in]; \ |
|
|
|
|
state[9] ^= Matrix[9][in]; \ |
|
|
|
|
state[10] ^= Matrix[10][in]; \ |
|
|
|
|
state[11] ^= Matrix[11][in]; \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
round_lyra(state); \ |
|
|
|
|
} |
|
|
|
|
#include "cuda_lyra2_vectors.h" |
|
|
|
|
|
|
|
|
|
#define TPB50 16 |
|
|
|
|
#define TPB52 8 |
|
|
|
|
|
|
|
|
|
#define uint2x4 uint28 |
|
|
|
|
#define memshift 3 |
|
|
|
|
|
|
|
|
|
#define Ncol 8 |
|
|
|
|
#define NcolMask 0x7 |
|
|
|
|
|
|
|
|
|
__device__ uint2x4* DMatrix; |
|
|
|
|
|
|
|
|
|
static __device__ __forceinline__ |
|
|
|
|
void Gfunc(uint2 & a, uint2 &b, uint2 &c, uint2 &d) |
|
|
|
|
void Gfunc(uint2 &a, uint2 &b, uint2 &c, uint2 &d) |
|
|
|
|
{ |
|
|
|
|
a += b; d ^= a; d = SWAPUINT2(d); |
|
|
|
|
c += d; b ^= c; b = ROR2(b, 24); |
|
|
|
@ -73,151 +28,233 @@ void Gfunc(uint2 & a, uint2 &b, uint2 &c, uint2 &d)
@@ -73,151 +28,233 @@ void Gfunc(uint2 & a, uint2 &b, uint2 &c, uint2 &d)
|
|
|
|
|
c += d; b ^= c; b = ROR2(b, 63); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__device__ __forceinline__ |
|
|
|
|
static void round_lyra(uint2 *s) |
|
|
|
|
static __device__ __forceinline__ |
|
|
|
|
void round_lyra(uint2x4* s) |
|
|
|
|
{ |
|
|
|
|
Gfunc(s[0], s[4], s[8], s[12]); |
|
|
|
|
Gfunc(s[1], s[5], s[9], s[13]); |
|
|
|
|
Gfunc(s[2], s[6], s[10], s[14]); |
|
|
|
|
Gfunc(s[3], s[7], s[11], s[15]); |
|
|
|
|
Gfunc(s[0], s[5], s[10], s[15]); |
|
|
|
|
Gfunc(s[1], s[6], s[11], s[12]); |
|
|
|
|
Gfunc(s[2], s[7], s[8], s[13]); |
|
|
|
|
Gfunc(s[3], s[4], s[9], s[14]); |
|
|
|
|
Gfunc(s[0].x, s[1].x, s[2].x, s[3].x); |
|
|
|
|
Gfunc(s[0].y, s[1].y, s[2].y, s[3].y); |
|
|
|
|
Gfunc(s[0].z, s[1].z, s[2].z, s[3].z); |
|
|
|
|
Gfunc(s[0].w, s[1].w, s[2].w, s[3].w); |
|
|
|
|
Gfunc(s[0].x, s[1].y, s[2].z, s[3].w); |
|
|
|
|
Gfunc(s[0].y, s[1].z, s[2].w, s[3].x); |
|
|
|
|
Gfunc(s[0].z, s[1].w, s[2].x, s[3].y); |
|
|
|
|
Gfunc(s[0].w, s[1].x, s[2].y, s[3].z); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__device__ __forceinline__ |
|
|
|
|
void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2 state[16], uint2 Matrix[96][8]) |
|
|
|
|
static __device__ __forceinline__ |
|
|
|
|
void reduceDuplex(uint2x4 state[4], uint32_t thread) |
|
|
|
|
{ |
|
|
|
|
#if __CUDA_ARCH__ > 500 |
|
|
|
|
#pragma unroll |
|
|
|
|
#endif |
|
|
|
|
uint2x4 state1[3]; |
|
|
|
|
|
|
|
|
|
const uint32_t ps1 = (256 * thread); |
|
|
|
|
const uint32_t ps2 = (memshift * 7 + memshift * 8 + 256 * thread); |
|
|
|
|
|
|
|
|
|
#pragma unroll 4 |
|
|
|
|
for (int i = 0; i < 8; i++) |
|
|
|
|
{ |
|
|
|
|
#pragma unroll |
|
|
|
|
for (int j = 0; j < 12; j++) |
|
|
|
|
state[j] ^= Matrix[12 * i + j][rowIn] + Matrix[12 * i + j][rowInOut]; |
|
|
|
|
const uint32_t s1 = ps1 + i*memshift; |
|
|
|
|
const uint32_t s2 = ps2 - i*memshift; |
|
|
|
|
|
|
|
|
|
for (int j = 0; j < 3; j++) |
|
|
|
|
state1[j] = __ldg4(&(DMatrix+s1)[j]); |
|
|
|
|
for (int j = 0; j < 3; j++) |
|
|
|
|
state[j] ^= state1[j]; |
|
|
|
|
|
|
|
|
|
round_lyra(state); |
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
|
for (int j = 0; j < 12; j++) |
|
|
|
|
Matrix[j + 84 - 12 * i][rowOut] = Matrix[12 * i + j][rowIn] ^ state[j]; |
|
|
|
|
|
|
|
|
|
Matrix[0 + 12 * i][rowInOut] ^= state[11]; |
|
|
|
|
Matrix[1 + 12 * i][rowInOut] ^= state[0]; |
|
|
|
|
Matrix[2 + 12 * i][rowInOut] ^= state[1]; |
|
|
|
|
Matrix[3 + 12 * i][rowInOut] ^= state[2]; |
|
|
|
|
Matrix[4 + 12 * i][rowInOut] ^= state[3]; |
|
|
|
|
Matrix[5 + 12 * i][rowInOut] ^= state[4]; |
|
|
|
|
Matrix[6 + 12 * i][rowInOut] ^= state[5]; |
|
|
|
|
Matrix[7 + 12 * i][rowInOut] ^= state[6]; |
|
|
|
|
Matrix[8 + 12 * i][rowInOut] ^= state[7]; |
|
|
|
|
Matrix[9 + 12 * i][rowInOut] ^= state[8]; |
|
|
|
|
Matrix[10 + 12 * i][rowInOut] ^= state[9]; |
|
|
|
|
Matrix[11 + 12 * i][rowInOut] ^= state[10]; |
|
|
|
|
for (int j = 0; j < 3; j++) |
|
|
|
|
state1[j] ^= state[j]; |
|
|
|
|
for (int j = 0; j < 3; j++) |
|
|
|
|
(DMatrix + s2)[j] = state1[j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__global__ __launch_bounds__(TPB, 1) |
|
|
|
|
void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash) |
|
|
|
|
static __device__ __forceinline__ |
|
|
|
|
void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2x4 state[4], uint32_t thread) |
|
|
|
|
{ |
|
|
|
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
|
|
|
if (thread < threads) |
|
|
|
|
uint2x4 state1[3], state2[3]; |
|
|
|
|
|
|
|
|
|
const uint32_t ps1 = ( memshift*8 * rowIn + 256 * thread); |
|
|
|
|
const uint32_t ps2 = ( memshift*8 * rowInOut + 256 * thread); |
|
|
|
|
const uint32_t ps3 = (memshift*7 + memshift*8 * rowOut + 256 * thread); |
|
|
|
|
|
|
|
|
|
#pragma unroll 1 |
|
|
|
|
for (int i = 0; i < 8; i++) |
|
|
|
|
{ |
|
|
|
|
uint2 state[16]; |
|
|
|
|
const uint32_t s1 = ps1 + i*memshift; |
|
|
|
|
const uint32_t s2 = ps2 + i*memshift; |
|
|
|
|
for (int j = 0; j < 3; j++) |
|
|
|
|
state1[j]= __ldg4(&(DMatrix + s1)[j]); |
|
|
|
|
for (int j = 0; j < 3; j++) |
|
|
|
|
state2[j]= __ldg4(&(DMatrix + s2)[j]); |
|
|
|
|
for (int j = 0; j < 3; j++) { |
|
|
|
|
uint2x4 tmp = state1[j] + state2[j]; |
|
|
|
|
state[j] ^= tmp; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
|
for (int i = 0; i<4; i++) { |
|
|
|
|
LOHI(state[i].x, state[i].y, outputHash[threads*i + thread]); |
|
|
|
|
} //password |
|
|
|
|
round_lyra(state); |
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
|
for (int i = 0; i<4; i++) { |
|
|
|
|
state[i + 4] = state[i]; |
|
|
|
|
} //salt |
|
|
|
|
for (int j = 0; j < 3; j++) { |
|
|
|
|
const uint32_t s3 = ps3 - i*memshift; |
|
|
|
|
state1[j] ^= state[j]; |
|
|
|
|
(DMatrix + s3)[j] = state1[j]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
|
|
|
|
|
|
|
|
|
for (int j = 0; j < 11; j++) |
|
|
|
|
((uint2*)state2)[j+1] ^= ((uint2*)state)[j]; |
|
|
|
|
|
|
|
|
|
for (int j = 0; j < 3; j++) |
|
|
|
|
(DMatrix + s2)[j] = state2[j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static __device__ __forceinline__ |
|
|
|
|
void reduceDuplexRowt(const int rowIn, const int rowInOut, const int rowOut, uint2x4* state, const uint32_t thread) |
|
|
|
|
{ |
|
|
|
|
const uint32_t ps1 = (memshift * 8 * rowIn + 256 * thread); |
|
|
|
|
const uint32_t ps2 = (memshift * 8 * rowInOut + 256 * thread); |
|
|
|
|
const uint32_t ps3 = (memshift * 8 * rowOut + 256 * thread); |
|
|
|
|
|
|
|
|
|
#pragma unroll 1 |
|
|
|
|
for (int i = 0; i < 8; i++) |
|
|
|
|
{ |
|
|
|
|
uint2x4 state1[3], state2[3]; |
|
|
|
|
|
|
|
|
|
const uint32_t s1 = ps1 + i*memshift; |
|
|
|
|
const uint32_t s2 = ps2 + i*memshift; |
|
|
|
|
|
|
|
|
|
for (int j = 0; j < 3; j++) { |
|
|
|
|
state1[j] = __ldg4(&(DMatrix + s1)[j]); |
|
|
|
|
state2[j] = __ldg4(&(DMatrix + s2)[j]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
|
for (int i = 0; i<8; i++) { |
|
|
|
|
state[i + 8] = blake2b_IV[i]; |
|
|
|
|
for (int j = 0; j < 3; j++) { |
|
|
|
|
state1[j] += state2[j]; |
|
|
|
|
state[j] ^= state1[j]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// blake2blyra x2 |
|
|
|
|
//#pragma unroll 24 |
|
|
|
|
for (int i = 0; i<24; i++) { |
|
|
|
|
round_lyra(state); |
|
|
|
|
} //because 12 is not enough |
|
|
|
|
round_lyra(state); |
|
|
|
|
|
|
|
|
|
uint2 Matrix[96][8]; // not cool |
|
|
|
|
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
|
|
|
|
|
|
|
|
|
// reducedSqueezeRow0 |
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (int i = 0; i < 8; i++) |
|
|
|
|
{ |
|
|
|
|
#pragma unroll 12 |
|
|
|
|
for (int j = 0; j<12; j++) { |
|
|
|
|
Matrix[j + 84 - 12 * i][0] = state[j]; |
|
|
|
|
for (int j = 0; j < 11; j++) |
|
|
|
|
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; |
|
|
|
|
|
|
|
|
|
if (rowInOut == rowOut) { |
|
|
|
|
for (int j = 0; j < 3; j++) { |
|
|
|
|
state2[j] ^= state[j]; |
|
|
|
|
(DMatrix + s2)[j]=state2[j]; |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
const uint32_t s3 = ps3 + i*memshift; |
|
|
|
|
for (int j = 0; j < 3; j++) { |
|
|
|
|
(DMatrix + s2)[j] = state2[j]; |
|
|
|
|
(DMatrix + s3)[j] ^= state[j]; |
|
|
|
|
} |
|
|
|
|
round_lyra(state); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#if __CUDA_ARCH__ == 500 |
|
|
|
|
__global__ __launch_bounds__(TPB50, 1) |
|
|
|
|
#else |
|
|
|
|
__global__ __launch_bounds__(TPB52, 2) |
|
|
|
|
#endif |
|
|
|
|
void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *g_hash) |
|
|
|
|
{ |
|
|
|
|
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
|
|
|
|
|
|
|
|
const uint2x4 blake2b_IV[2] = { |
|
|
|
|
{{ 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a }}, |
|
|
|
|
{{ 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 }} |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
if (thread < threads) |
|
|
|
|
{ |
|
|
|
|
uint2x4 state[4]; |
|
|
|
|
|
|
|
|
|
((uint2*)state)[0] = __ldg(&g_hash[thread]); |
|
|
|
|
((uint2*)state)[1] = __ldg(&g_hash[thread + threads]); |
|
|
|
|
((uint2*)state)[2] = __ldg(&g_hash[thread + threads*2]); |
|
|
|
|
((uint2*)state)[3] = __ldg(&g_hash[thread + threads*3]); |
|
|
|
|
|
|
|
|
|
state[1] = state[0]; |
|
|
|
|
state[2] = blake2b_IV[0]; |
|
|
|
|
state[3] = blake2b_IV[1]; |
|
|
|
|
|
|
|
|
|
for (int i = 0; i<24; i++) |
|
|
|
|
round_lyra(state); //because 12 is not enough |
|
|
|
|
|
|
|
|
|
// reducedSqueezeRow1 |
|
|
|
|
#pragma unroll 8 |
|
|
|
|
const uint32_t ps1 = (memshift * 7 + 256 * thread); |
|
|
|
|
for (int i = 0; i < 8; i++) |
|
|
|
|
{ |
|
|
|
|
#pragma unroll 12 |
|
|
|
|
for (int j = 0; j<12; j++) { |
|
|
|
|
state[j] ^= Matrix[j + 12 * i][0]; |
|
|
|
|
} |
|
|
|
|
const uint32_t s1 = ps1 - memshift * i; |
|
|
|
|
for (int j = 0; j < 3; j++) |
|
|
|
|
(DMatrix + s1)[j] = (state)[j]; |
|
|
|
|
round_lyra(state); |
|
|
|
|
#pragma unroll 12 |
|
|
|
|
for (int j = 0; j<12; j++) { |
|
|
|
|
Matrix[j + 84 - 12 * i][1] = Matrix[j + 12 * i][0] ^ state[j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
reduceDuplexRowSetup(1, 0, 2,state, Matrix); |
|
|
|
|
reduceDuplexRowSetup(2, 1, 3, state, Matrix); |
|
|
|
|
reduceDuplexRowSetup(3, 0, 4, state, Matrix); |
|
|
|
|
reduceDuplexRowSetup(4, 3, 5, state, Matrix); |
|
|
|
|
reduceDuplexRowSetup(5, 2, 6, state, Matrix); |
|
|
|
|
reduceDuplexRowSetup(6, 1, 7, state, Matrix); |
|
|
|
|
|
|
|
|
|
uint32_t rowa; |
|
|
|
|
rowa = state[0].x & 7; |
|
|
|
|
reduceDuplexRow(7, rowa, 0); |
|
|
|
|
rowa = state[0].x & 7; |
|
|
|
|
reduceDuplexRow(0, rowa, 3); |
|
|
|
|
rowa = state[0].x & 7; |
|
|
|
|
reduceDuplexRow(3, rowa, 6); |
|
|
|
|
rowa = state[0].x & 7; |
|
|
|
|
reduceDuplexRow(6, rowa, 1); |
|
|
|
|
rowa = state[0].x & 7; |
|
|
|
|
reduceDuplexRow(1, rowa, 4); |
|
|
|
|
rowa = state[0].x & 7; |
|
|
|
|
reduceDuplexRow(4, rowa, 7); |
|
|
|
|
rowa = state[0].x & 7; |
|
|
|
|
reduceDuplexRow(7, rowa, 2); |
|
|
|
|
rowa = state[0].x & 7; |
|
|
|
|
reduceDuplexRow(2, rowa, 5); |
|
|
|
|
|
|
|
|
|
absorbblock(rowa); |
|
|
|
|
reduceDuplex(state, thread); |
|
|
|
|
|
|
|
|
|
reduceDuplexRowSetup(1, 0, 2, state, thread); |
|
|
|
|
reduceDuplexRowSetup(2, 1, 3, state, thread); |
|
|
|
|
reduceDuplexRowSetup(3, 0, 4, state, thread); |
|
|
|
|
reduceDuplexRowSetup(4, 3, 5, state, thread); |
|
|
|
|
reduceDuplexRowSetup(5, 2, 6, state, thread); |
|
|
|
|
reduceDuplexRowSetup(6, 1, 7, state, thread); |
|
|
|
|
|
|
|
|
|
uint32_t rowa = state[0].x.x & 7; |
|
|
|
|
reduceDuplexRowt(7, rowa, 0, state, thread); |
|
|
|
|
rowa = state[0].x.x & 7; |
|
|
|
|
reduceDuplexRowt(0, rowa, 3, state, thread); |
|
|
|
|
rowa = state[0].x.x & 7; |
|
|
|
|
reduceDuplexRowt(3, rowa, 6, state, thread); |
|
|
|
|
rowa = state[0].x.x & 7; |
|
|
|
|
reduceDuplexRowt(6, rowa, 1, state, thread); |
|
|
|
|
rowa = state[0].x.x & 7; |
|
|
|
|
reduceDuplexRowt(1, rowa, 4, state, thread); |
|
|
|
|
rowa = state[0].x.x & 7; |
|
|
|
|
reduceDuplexRowt(4, rowa, 7, state, thread); |
|
|
|
|
rowa = state[0].x.x & 7; |
|
|
|
|
reduceDuplexRowt(7, rowa, 2, state, thread); |
|
|
|
|
rowa = state[0].x.x & 7; |
|
|
|
|
reduceDuplexRowt(2, rowa, 5, state, thread); |
|
|
|
|
|
|
|
|
|
const int32_t shift = (memshift * 8 * rowa + 256 * thread); |
|
|
|
|
|
|
|
|
|
#pragma unroll |
|
|
|
|
for (int i = 0; i<4; i++) { |
|
|
|
|
outputHash[threads*i + thread] = devectorize(state[i]); |
|
|
|
|
} //password |
|
|
|
|
for (int j = 0; j < 3; j++) |
|
|
|
|
state[j] ^= __ldg4(&(DMatrix + shift)[j]); |
|
|
|
|
|
|
|
|
|
for (int i = 0; i < 12; i++) |
|
|
|
|
round_lyra(state); |
|
|
|
|
|
|
|
|
|
g_hash[thread] = ((uint2*)state)[0]; |
|
|
|
|
g_hash[thread + threads] = ((uint2*)state)[1]; |
|
|
|
|
g_hash[thread + threads*2] = ((uint2*)state)[2]; |
|
|
|
|
g_hash[thread + threads*3] = ((uint2*)state)[3]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
} //thread |
|
|
|
|
__host__ |
|
|
|
|
void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t* d_matrix) |
|
|
|
|
{ |
|
|
|
|
cuda_get_arch(thr_id); |
|
|
|
|
cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__host__ |
|
|
|
|
void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order) |
|
|
|
|
void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order) |
|
|
|
|
{ |
|
|
|
|
const uint32_t threadsperblock = TPB; |
|
|
|
|
int dev_id = device_map[thr_id % MAX_GPUS]; |
|
|
|
|
uint32_t tpb = TPB52; |
|
|
|
|
if (device_sm[dev_id] == 500) tpb = TPB50; |
|
|
|
|
|
|
|
|
|
dim3 grid((threads + threadsperblock - 1) / threadsperblock); |
|
|
|
|
dim3 block(threadsperblock); |
|
|
|
|
dim3 grid((threads + tpb - 1) / tpb); |
|
|
|
|
dim3 block(tpb); |
|
|
|
|
|
|
|
|
|
lyra2_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash); |
|
|
|
|
lyra2_gpu_hash_32 <<< grid, block >>> (threads, startNounce, (uint2*)d_hash); |
|
|
|
|
} |
|
|
|
|