mirror of https://github.com/GOSTSec/ccminer
Tanguy Pruvot
7 years ago
10 changed files with 708 additions and 278 deletions
@ -1,309 +1,381 @@
@@ -1,309 +1,381 @@
|
||||
#include "miner.h" |
||||
/** |
||||
* KECCAK-256 CUDA optimised implementation, based on ccminer-alexis code |
||||
*/ |
||||
|
||||
#include <miner.h> |
||||
|
||||
extern "C" { |
||||
#include <stdint.h> |
||||
#include <memory.h> |
||||
} |
||||
|
||||
#include "cuda_helper.h" |
||||
|
||||
static const uint64_t host_keccak_round_constants[24] = { |
||||
0x0000000000000001ull, 0x0000000000008082ull, |
||||
0x800000000000808aull, 0x8000000080008000ull, |
||||
0x000000000000808bull, 0x0000000080000001ull, |
||||
0x8000000080008081ull, 0x8000000000008009ull, |
||||
0x000000000000008aull, 0x0000000000000088ull, |
||||
0x0000000080008009ull, 0x000000008000000aull, |
||||
0x000000008000808bull, 0x800000000000008bull, |
||||
0x8000000000008089ull, 0x8000000000008003ull, |
||||
0x8000000000008002ull, 0x8000000000000080ull, |
||||
0x000000000000800aull, 0x800000008000000aull, |
||||
0x8000000080008081ull, 0x8000000000008080ull, |
||||
0x0000000080000001ull, 0x8000000080008008ull |
||||
}; |
||||
|
||||
uint32_t *d_nounce[MAX_GPUS]; |
||||
uint32_t *d_KNonce[MAX_GPUS]; |
||||
|
||||
__constant__ uint32_t pTarget[8]; |
||||
__constant__ uint64_t keccak_round_constants[24]; |
||||
__constant__ uint64_t c_PaddedMessage80[10]; // padded message (80 bytes + padding?) |
||||
|
||||
#if __CUDA_ARCH__ >= 350 |
||||
__device__ __forceinline__ |
||||
static void keccak_blockv35(uint2 *s, const uint64_t *keccak_round_constants) |
||||
{ |
||||
size_t i; |
||||
uint2 t[5], u[5], v, w; |
||||
|
||||
#pragma unroll |
||||
for (i = 0; i < 24; i++) { |
||||
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ |
||||
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; |
||||
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; |
||||
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; |
||||
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; |
||||
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; |
||||
#include <cuda_helper.h> |
||||
#include <cuda_vectors.h> |
||||
|
||||
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ |
||||
u[0] = t[4] ^ ROL2(t[1], 1); |
||||
u[1] = t[0] ^ ROL2(t[2], 1); |
||||
u[2] = t[1] ^ ROL2(t[3], 1); |
||||
u[3] = t[2] ^ ROL2(t[4], 1); |
||||
u[4] = t[3] ^ ROL2(t[0], 1); |
||||
#define TPB52 1024 |
||||
#define TPB50 384 |
||||
#define NPT 2 |
||||
#define NBN 2 |
||||
|
||||
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ |
||||
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; |
||||
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; |
||||
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; |
||||
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; |
||||
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; |
||||
static uint32_t *d_nonces[MAX_GPUS]; |
||||
static uint32_t *h_nonces[MAX_GPUS]; |
||||
|
||||
/* rho pi: b[..] = rotl(a[..], ..) */ |
||||
v = s[1]; |
||||
s[1] = ROL2(s[6], 44); |
||||
s[6] = ROL2(s[9], 20); |
||||
s[9] = ROL2(s[22], 61); |
||||
s[22] = ROL2(s[14], 39); |
||||
s[14] = ROL2(s[20], 18); |
||||
s[20] = ROL2(s[2], 62); |
||||
s[2] = ROL2(s[12], 43); |
||||
s[12] = ROL2(s[13], 25); |
||||
s[13] = ROL2(s[19], 8); |
||||
s[19] = ROL2(s[23], 56); |
||||
s[23] = ROL2(s[15], 41); |
||||
s[15] = ROL2(s[4], 27); |
||||
s[4] = ROL2(s[24], 14); |
||||
s[24] = ROL2(s[21], 2); |
||||
s[21] = ROL2(s[8], 55); |
||||
s[8] = ROL2(s[16], 45); |
||||
s[16] = ROL2(s[5], 36); |
||||
s[5] = ROL2(s[3], 28); |
||||
s[3] = ROL2(s[18], 21); |
||||
s[18] = ROL2(s[17], 15); |
||||
s[17] = ROL2(s[11], 10); |
||||
s[11] = ROL2(s[7], 6); |
||||
s[7] = ROL2(s[10], 3); |
||||
s[10] = ROL2(v, 1); |
||||
__constant__ uint2 c_message48[6]; |
||||
__constant__ uint2 c_mid[17]; |
||||
|
||||
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
||||
v = s[0]; w = s[1]; s[0] ^= (~w) & s[2]; s[1] ^= (~s[2]) & s[3]; s[2] ^= (~s[3]) & s[4]; s[3] ^= (~s[4]) & v; s[4] ^= (~v) & w; |
||||
v = s[5]; w = s[6]; s[5] ^= (~w) & s[7]; s[6] ^= (~s[7]) & s[8]; s[7] ^= (~s[8]) & s[9]; s[8] ^= (~s[9]) & v; s[9] ^= (~v) & w; |
||||
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; |
||||
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; |
||||
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; |
||||
__constant__ uint2 keccak_round_constants[24] = { |
||||
{ 0x00000001, 0x00000000 }, { 0x00008082, 0x00000000 }, { 0x0000808a, 0x80000000 }, { 0x80008000, 0x80000000 }, |
||||
{ 0x0000808b, 0x00000000 }, { 0x80000001, 0x00000000 }, { 0x80008081, 0x80000000 }, { 0x00008009, 0x80000000 }, |
||||
{ 0x0000008a, 0x00000000 }, { 0x00000088, 0x00000000 }, { 0x80008009, 0x00000000 }, { 0x8000000a, 0x00000000 }, |
||||
{ 0x8000808b, 0x00000000 }, { 0x0000008b, 0x80000000 }, { 0x00008089, 0x80000000 }, { 0x00008003, 0x80000000 }, |
||||
{ 0x00008002, 0x80000000 }, { 0x00000080, 0x80000000 }, { 0x0000800a, 0x00000000 }, { 0x8000000a, 0x80000000 }, |
||||
{ 0x80008081, 0x80000000 }, { 0x00008080, 0x80000000 }, { 0x80000001, 0x00000000 }, { 0x80008008, 0x80000000 } |
||||
}; |
||||
|
||||
/* iota: a[0,0] ^= round constant */ |
||||
s[0] ^= vectorize(keccak_round_constants[i]); |
||||
} |
||||
__device__ __forceinline__ |
||||
uint2 xor3x(const uint2 a,const uint2 b,const uint2 c) { |
||||
uint2 result; |
||||
#if __CUDA_ARCH__ >= 500 && CUDA_VERSION >= 7050 |
||||
asm ("lop3.b32 %0, %1, %2, %3, 0x96;" : "=r"(result.x) : "r"(a.x), "r"(b.x),"r"(c.x)); //0x96 = 0xF0 ^ 0xCC ^ 0xAA |
||||
asm ("lop3.b32 %0, %1, %2, %3, 0x96;" : "=r"(result.y) : "r"(a.y), "r"(b.y),"r"(c.y)); //0x96 = 0xF0 ^ 0xCC ^ 0xAA |
||||
#else |
||||
result = a^b^c; |
||||
#endif |
||||
return result; |
||||
} |
||||
|
||||
__device__ __forceinline__ |
||||
uint2 chi(const uint2 a,const uint2 b,const uint2 c) { // keccak chi |
||||
uint2 result; |
||||
#if __CUDA_ARCH__ >= 500 && CUDA_VERSION >= 7050 |
||||
asm ("lop3.b32 %0, %1, %2, %3, 0xD2;" : "=r"(result.x) : "r"(a.x), "r"(b.x),"r"(c.x)); //0xD2 = 0xF0 ^ ((~0xCC) & 0xAA) |
||||
asm ("lop3.b32 %0, %1, %2, %3, 0xD2;" : "=r"(result.y) : "r"(a.y), "r"(b.y),"r"(c.y)); //0xD2 = 0xF0 ^ ((~0xCC) & 0xAA) |
||||
#else |
||||
result = a ^ (~b) & c; |
||||
#endif |
||||
return result; |
||||
} |
||||
|
||||
__device__ __forceinline__ |
||||
static void keccak_blockv30(uint64_t *s, const uint64_t *keccak_round_constants) |
||||
uint64_t xor5(uint64_t a, uint64_t b, uint64_t c, uint64_t d, uint64_t e) |
||||
{ |
||||
size_t i; |
||||
uint64_t t[5], u[5], v, w; |
||||
|
||||
/* absorb input */ |
||||
uint64_t result; |
||||
asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(d) ,"l"(e)); |
||||
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(c)); |
||||
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(b)); |
||||
asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(a)); |
||||
return result; |
||||
} |
||||
|
||||
for (i = 0; i < 24; i++) { |
||||
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ |
||||
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; |
||||
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; |
||||
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; |
||||
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; |
||||
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; |
||||
#if __CUDA_ARCH__ <= 500 |
||||
__global__ __launch_bounds__(TPB50, 2) |
||||
#else |
||||
__global__ __launch_bounds__(TPB52, 1) |
||||
#endif |
||||
void keccak256_gpu_hash_80(uint32_t threads, uint32_t startNonce, uint32_t *resNounce, const uint2 highTarget) |
||||
{ |
||||
uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; |
||||
uint2 s[25], t[5], v, w, u[5]; |
||||
#if __CUDA_ARCH__ > 500 |
||||
uint64_t step = gridDim.x * blockDim.x; |
||||
uint64_t maxNonce = startNonce + threads; |
||||
for(uint64_t nounce = startNonce + thread; nounce<maxNonce;nounce+=step) { |
||||
#else |
||||
uint32_t nounce = startNonce+thread; |
||||
if(thread<threads) { |
||||
#endif |
||||
s[ 9] = make_uint2(c_message48[0].x,cuda_swab32(nounce)); |
||||
s[10] = keccak_round_constants[0]; |
||||
|
||||
t[ 4] = c_message48[1]^s[ 9]; |
||||
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ |
||||
u[0] = t[4] ^ ROTL64(t[1], 1); |
||||
u[1] = t[0] ^ ROTL64(t[2], 1); |
||||
u[2] = t[1] ^ ROTL64(t[3], 1); |
||||
u[3] = t[2] ^ ROTL64(t[4], 1); |
||||
u[4] = t[3] ^ ROTL64(t[0], 1); |
||||
u[ 0] = t[4] ^ c_mid[ 0]; |
||||
u[ 1] = c_mid[ 1] ^ ROL2(t[4],1); |
||||
u[ 2] = c_mid[ 2]; |
||||
/* thetarho pi: b[..] = rotl(a[..] ^ d[...], ..)*/ |
||||
s[ 7] = ROL2(s[10]^u[0], 3); |
||||
s[10] = c_mid[ 3]; |
||||
w = c_mid[ 4]; |
||||
s[20] = c_mid[ 5]; |
||||
s[ 6] = ROL2(s[ 9]^u[2],20); |
||||
s[ 9] = c_mid[ 6]; |
||||
s[22] = c_mid[ 7]; |
||||
s[14] = ROL2(u[0],18); |
||||
s[ 2] = c_mid[ 8]; |
||||
s[12] = ROL2(u[1],25); |
||||
s[13] = c_mid[ 9]; |
||||
s[19] = ROR8(u[1]); |
||||
s[23] = ROR2(u[0],23); |
||||
s[15] = c_mid[10]; |
||||
s[ 4] = c_mid[11]; |
||||
s[24] = c_mid[12]; |
||||
s[21] = ROR2(c_message48[2]^u[1], 9); |
||||
s[ 8] = c_mid[13]; |
||||
s[16] = ROR2(c_message48[3]^u[0],28); |
||||
s[ 5] = ROL2(c_message48[4]^u[1],28); |
||||
s[ 3] = ROL2(u[1],21); |
||||
s[18] = c_mid[14]; |
||||
s[17] = c_mid[15]; |
||||
s[11] = c_mid[16]; |
||||
|
||||
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ |
||||
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; |
||||
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; |
||||
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; |
||||
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; |
||||
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; |
||||
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
||||
v = c_message48[5]^u[0]; |
||||
s[ 0] = chi(v,w,s[ 2]); |
||||
s[ 1] = chi(w,s[ 2],s[ 3]); |
||||
s[ 2] = chi(s[ 2],s[ 3],s[ 4]); |
||||
s[ 3] = chi(s[ 3],s[ 4],v); |
||||
s[ 4] = chi(s[ 4],v,w); |
||||
v = s[ 5]; w = s[ 6]; s[ 5] = chi(v,w,s[ 7]); s[ 6] = chi(w,s[ 7],s[ 8]); s[ 7] = chi(s[ 7],s[ 8],s[ 9]); s[ 8] = chi(s[ 8],s[ 9],v);s[ 9] = chi(s[ 9],v,w); |
||||
v = s[10]; w = s[11]; s[10] = chi(v,w,s[12]); s[11] = chi(w,s[12],s[13]); s[12] = chi(s[12],s[13],s[14]); s[13] = chi(s[13],s[14],v);s[14] = chi(s[14],v,w); |
||||
v = s[15]; w = s[16]; s[15] = chi(v,w,s[17]); s[16] = chi(w,s[17],s[18]); s[17] = chi(s[17],s[18],s[19]); s[18] = chi(s[18],s[19],v);s[19] = chi(s[19],v,w); |
||||
v = s[20]; w = s[21]; s[20] = chi(v,w,s[22]); s[21] = chi(w,s[22],s[23]); s[22] = chi(s[22],s[23],s[24]); s[23] = chi(s[23],s[24],v);s[24] = chi(s[24],v,w); |
||||
|
||||
/* rho pi: b[..] = rotl(a[..], ..) */ |
||||
v = s[ 1]; |
||||
s[ 1] = ROTL64(s[ 6], 44); |
||||
s[ 6] = ROTL64(s[ 9], 20); |
||||
s[ 9] = ROTL64(s[22], 61); |
||||
s[22] = ROTL64(s[14], 39); |
||||
s[14] = ROTL64(s[20], 18); |
||||
s[20] = ROTL64(s[ 2], 62); |
||||
s[ 2] = ROTL64(s[12], 43); |
||||
s[12] = ROTL64(s[13], 25); |
||||
s[13] = ROTL64(s[19], 8); |
||||
s[19] = ROTL64(s[23], 56); |
||||
s[23] = ROTL64(s[15], 41); |
||||
s[15] = ROTL64(s[ 4], 27); |
||||
s[ 4] = ROTL64(s[24], 14); |
||||
s[24] = ROTL64(s[21], 2); |
||||
s[21] = ROTL64(s[ 8], 55); |
||||
s[ 8] = ROTL64(s[16], 45); |
||||
s[16] = ROTL64(s[ 5], 36); |
||||
s[ 5] = ROTL64(s[ 3], 28); |
||||
s[ 3] = ROTL64(s[18], 21); |
||||
s[18] = ROTL64(s[17], 15); |
||||
s[17] = ROTL64(s[11], 10); |
||||
s[11] = ROTL64(s[ 7], 6); |
||||
s[ 7] = ROTL64(s[10], 3); |
||||
s[10] = ROTL64( v, 1); |
||||
/* iota: a[0,0] ^= round constant */ |
||||
s[ 0] ^=keccak_round_constants[ 0]; |
||||
|
||||
#if __CUDA_ARCH__ > 500 |
||||
#pragma unroll 22 |
||||
#else |
||||
#pragma unroll 4 |
||||
#endif |
||||
for (int i = 1; i < 23; i++) { |
||||
#pragma unroll |
||||
for(int j=0;j<5;j++) { |
||||
t[ j] = vectorize(xor5(devectorize(s[ j]),devectorize(s[j+5]),devectorize(s[j+10]),devectorize(s[j+15]),devectorize(s[j+20]))); |
||||
} |
||||
/*theta*/ |
||||
#pragma unroll |
||||
for(int j=0;j<5;j++) { |
||||
u[j] = ROL2(t[j], 1); |
||||
} |
||||
s[ 4] = xor3x(s[ 4], t[3], u[0]);s[ 9] = xor3x(s[ 9], t[3], u[0]);s[14] = xor3x(s[14], t[3], u[0]);s[19] = xor3x(s[19], t[3], u[0]);s[24] = xor3x(s[24], t[3], u[0]); |
||||
s[ 0] = xor3x(s[ 0], t[4], u[1]);s[ 5] = xor3x(s[ 5], t[4], u[1]);s[10] = xor3x(s[10], t[4], u[1]);s[15] = xor3x(s[15], t[4], u[1]);s[20] = xor3x(s[20], t[4], u[1]); |
||||
s[ 1] = xor3x(s[ 1], t[0], u[2]);s[ 6] = xor3x(s[ 6], t[0], u[2]);s[11] = xor3x(s[11], t[0], u[2]);s[16] = xor3x(s[16], t[0], u[2]);s[21] = xor3x(s[21], t[0], u[2]); |
||||
s[ 2] = xor3x(s[ 2], t[1], u[3]);s[ 7] = xor3x(s[ 7], t[1], u[3]);s[12] = xor3x(s[12], t[1], u[3]);s[17] = xor3x(s[17], t[1], u[3]);s[22] = xor3x(s[22], t[1], u[3]); |
||||
s[ 3] = xor3x(s[ 3], t[2], u[4]);s[ 8] = xor3x(s[ 8], t[2], u[4]);s[13] = xor3x(s[13], t[2], u[4]);s[18] = xor3x(s[18], t[2], u[4]);s[23] = xor3x(s[23], t[2], u[4]); |
||||
/*rho pi: b[..] = rotl(a[..] ^ d[...], ..)*/ |
||||
v = s[ 1]; |
||||
s[ 1] = ROL2(s[ 6],44); s[ 6] = ROL2(s[ 9],20); s[ 9] = ROL2(s[22],61); s[22] = ROL2(s[14],39); |
||||
s[14] = ROL2(s[20],18); s[20] = ROL2(s[ 2],62); s[ 2] = ROL2(s[12],43); s[12] = ROL2(s[13],25); |
||||
s[13] = ROL8(s[19]); s[19] = ROR8(s[23]); s[23] = ROL2(s[15],41); s[15] = ROL2(s[ 4],27); |
||||
s[ 4] = ROL2(s[24],14); s[24] = ROL2(s[21], 2); s[21] = ROL2(s[ 8],55); s[ 8] = ROL2(s[16],45); |
||||
s[16] = ROL2(s[ 5],36); s[ 5] = ROL2(s[ 3],28); s[ 3] = ROL2(s[18],21); s[18] = ROL2(s[17],15); |
||||
s[17] = ROL2(s[11],10); s[11] = ROL2(s[ 7], 6); s[ 7] = ROL2(s[10], 3); s[10] = ROL2(v, 1); |
||||
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
||||
v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w; |
||||
v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w; |
||||
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; |
||||
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; |
||||
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; |
||||
|
||||
#pragma unroll |
||||
for(int j=0;j<25;j+=5) { |
||||
v=s[j];w=s[j + 1];s[j] = chi(s[j],s[j+1],s[j+2]);s[j+1] = chi(s[j+1],s[j+2],s[j+3]);s[j+2]=chi(s[j+2],s[j+3],s[j+4]);s[j+3]=chi(s[j+3],s[j+4],v);s[j+4]=chi(s[j+4],v,w); |
||||
} |
||||
/* iota: a[0,0] ^= round constant */ |
||||
s[0] ^= keccak_round_constants[i]; |
||||
s[ 0] ^=keccak_round_constants[ i]; |
||||
} |
||||
} |
||||
#endif |
||||
|
||||
__global__ __launch_bounds__(128,5) |
||||
void keccak256_gpu_hash_80(uint32_t threads, uint32_t startNounce, void *outputHash, uint32_t *resNounce) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
uint32_t nounce = startNounce + thread; |
||||
|
||||
#if __CUDA_ARCH__ >= 350 |
||||
uint2 keccak_gpu_state[25]; |
||||
#pragma unroll 25 |
||||
for (int i=0; i<25; i++) { |
||||
if (i<9) keccak_gpu_state[i] = vectorize(c_PaddedMessage80[i]); |
||||
else keccak_gpu_state[i] = make_uint2(0, 0); |
||||
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ |
||||
#pragma unroll 5 |
||||
for(int j=0;j<5;j++) { |
||||
t[ j] = xor3x(xor3x(s[j+0],s[j+5],s[j+10]), s[j+15], s[j+20]); |
||||
} |
||||
|
||||
keccak_gpu_state[9]= vectorize(c_PaddedMessage80[9]); |
||||
keccak_gpu_state[9].y = cuda_swab32(nounce); |
||||
keccak_gpu_state[10] = make_uint2(1, 0); |
||||
keccak_gpu_state[16] = make_uint2(0, 0x80000000); |
||||
|
||||
keccak_blockv35(keccak_gpu_state,keccak_round_constants); |
||||
if (devectorize(keccak_gpu_state[3]) <= ((uint64_t*)pTarget)[3]) {resNounce[0] = nounce;} |
||||
#else |
||||
uint64_t keccak_gpu_state[25]; |
||||
#pragma unroll 25 |
||||
for (int i=0; i<25; i++) { |
||||
if (i<9) keccak_gpu_state[i] = c_PaddedMessage80[i]; |
||||
else keccak_gpu_state[i] = 0; |
||||
s[24] = xor3x(s[24],t[3],ROL2(t[0],1)); |
||||
s[18] = xor3x(s[18],t[2],ROL2(t[4],1)); |
||||
s[ 0] = xor3x(s[ 0],t[4],ROL2(t[1],1)); |
||||
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ |
||||
s[24] = ROL2(s[24],14); |
||||
s[18] = ROL2(s[18],21); |
||||
if (devectorize(chi(s[18],s[24],s[ 0])) <= devectorize(highTarget)) { |
||||
// if(chi(s[18].x,s[24].x,s[0].x)<=highTarget.x) { |
||||
// if(chi(s[18].y,s[24].y,s[0].y)<=highTarget.y) { |
||||
const uint32_t tmp = atomicExch(&resNounce[0], nounce); |
||||
if (tmp != UINT32_MAX) |
||||
resNounce[1] = tmp; |
||||
// return; |
||||
// } |
||||
} |
||||
keccak_gpu_state[9] = REPLACE_HIDWORD(c_PaddedMessage80[9], cuda_swab32(nounce)); |
||||
keccak_gpu_state[10] = 0x0000000000000001; |
||||
keccak_gpu_state[16] = 0x8000000000000000; |
||||
|
||||
keccak_blockv30(keccak_gpu_state, keccak_round_constants); |
||||
if (keccak_gpu_state[3] <= ((uint64_t*)pTarget)[3]) { resNounce[0] = nounce; } |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
__host__ |
||||
uint32_t keccak256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_outputHash, int order) |
||||
void keccak256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t* resNonces, const uint2 highTarget) |
||||
{ |
||||
uint32_t result = UINT32_MAX; |
||||
cudaMemset(d_KNonce[thr_id], 0xff, sizeof(uint32_t)); |
||||
const uint32_t threadsperblock = 128; |
||||
|
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
size_t shared_size = 0; |
||||
|
||||
keccak256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash, d_KNonce[thr_id]); |
||||
|
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
cudaMemcpy(d_nounce[thr_id], d_KNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
||||
cudaThreadSynchronize(); |
||||
result = *d_nounce[thr_id]; |
||||
uint32_t tpb; |
||||
dim3 grid; |
||||
if (device_sm[device_map[thr_id]] <= 500) { |
||||
tpb = TPB50; |
||||
grid.x = (threads + tpb-1)/tpb; |
||||
} else { |
||||
tpb = TPB52; |
||||
grid.x = (threads + (NPT*tpb)-1)/(NPT*tpb); |
||||
} |
||||
const dim3 block(tpb); |
||||
|
||||
return result; |
||||
keccak256_gpu_hash_80<<<grid, block>>>(threads, startNonce, d_nonces[thr_id], highTarget); |
||||
// cudaThreadSynchronize(); |
||||
cudaMemcpy(h_nonces[thr_id], d_nonces[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost); |
||||
memcpy(resNonces, h_nonces[thr_id], NBN*sizeof(uint32_t)); |
||||
} |
||||
|
||||
__global__ __launch_bounds__(256,3) |
||||
void keccak256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash) |
||||
#if __CUDA_ARCH__ <= 500 |
||||
__global__ __launch_bounds__(TPB50, 2) |
||||
#else |
||||
__global__ __launch_bounds__(TPB52, 1) |
||||
#endif |
||||
void keccak256_gpu_hash_32(uint32_t threads, uint2* outputHash) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
#if __CUDA_ARCH__ >= 350 /* tpr: to double check if faster on SM5+ */ |
||||
uint2 keccak_gpu_state[25]; |
||||
uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; |
||||
uint2 s[25], t[5], v, w, u[5]; |
||||
|
||||
if(thread < threads) { |
||||
#pragma unroll 25 |
||||
for (int i = 0; i<25; i++) { |
||||
if (i<4) keccak_gpu_state[i] = vectorize(outputHash[i*threads+thread]); |
||||
else keccak_gpu_state[i] = make_uint2(0, 0); |
||||
if (i<4) s[i] = __ldg(&outputHash[i*threads+thread]); |
||||
else s[i] = make_uint2(0, 0); |
||||
} |
||||
keccak_gpu_state[4] = make_uint2(1, 0); |
||||
keccak_gpu_state[16] = make_uint2(0, 0x80000000); |
||||
keccak_blockv35(keccak_gpu_state, keccak_round_constants); |
||||
|
||||
s[4] = keccak_round_constants[ 0]; |
||||
s[16] = make_uint2(0, 0x80000000); |
||||
#if __CUDA_ARCH__ > 500 |
||||
#pragma unroll |
||||
#else |
||||
#pragma unroll 4 |
||||
for (int i=0; i<4; i++) |
||||
outputHash[i*threads+thread] = devectorize(keccak_gpu_state[i]); |
||||
#else |
||||
uint64_t keccak_gpu_state[25]; |
||||
#pragma unroll 25 |
||||
for (int i = 0; i<25; i++) { |
||||
if (i<4) |
||||
keccak_gpu_state[i] = outputHash[i*threads+thread]; |
||||
else |
||||
keccak_gpu_state[i] = 0; |
||||
#endif |
||||
for (uint32_t i = 0; i < 23; i++) { |
||||
/*theta*/ |
||||
#pragma unroll 5 |
||||
for(int j=0; j<5; j++) { |
||||
t[ j] = vectorize(xor5(devectorize(s[ j]),devectorize(s[j+5]),devectorize(s[j+10]),devectorize(s[j+15]),devectorize(s[j+20]))); |
||||
} |
||||
/*theta*/ |
||||
#pragma unroll 5 |
||||
for(int j=0; j<5; j++) { |
||||
u[j] = ROL2(t[j], 1); |
||||
} |
||||
s[ 4] = xor3x(s[ 4], t[3], u[0]);s[ 9] = xor3x(s[ 9], t[3], u[0]);s[14] = xor3x(s[14], t[3], u[0]);s[19] = xor3x(s[19], t[3], u[0]);s[24] = xor3x(s[24], t[3], u[0]); |
||||
s[ 0] = xor3x(s[ 0], t[4], u[1]);s[ 5] = xor3x(s[ 5], t[4], u[1]);s[10] = xor3x(s[10], t[4], u[1]);s[15] = xor3x(s[15], t[4], u[1]);s[20] = xor3x(s[20], t[4], u[1]); |
||||
s[ 1] = xor3x(s[ 1], t[0], u[2]);s[ 6] = xor3x(s[ 6], t[0], u[2]);s[11] = xor3x(s[11], t[0], u[2]);s[16] = xor3x(s[16], t[0], u[2]);s[21] = xor3x(s[21], t[0], u[2]); |
||||
s[ 2] = xor3x(s[ 2], t[1], u[3]);s[ 7] = xor3x(s[ 7], t[1], u[3]);s[12] = xor3x(s[12], t[1], u[3]);s[17] = xor3x(s[17], t[1], u[3]);s[22] = xor3x(s[22], t[1], u[3]); |
||||
s[ 3] = xor3x(s[ 3], t[2], u[4]);s[ 8] = xor3x(s[ 8], t[2], u[4]);s[13] = xor3x(s[13], t[2], u[4]);s[18] = xor3x(s[18], t[2], u[4]);s[23] = xor3x(s[23], t[2], u[4]); |
||||
/*rho pi: b[..] = rotl(a[..] ^ d[...], ..)*/ |
||||
v = s[ 1]; |
||||
s[ 1] = ROL2(s[ 6],44); s[ 6] = ROL2(s[ 9],20); s[ 9] = ROL2(s[22],61); s[22] = ROL2(s[14],39); |
||||
s[14] = ROL2(s[20],18); s[20] = ROL2(s[ 2],62); s[ 2] = ROL2(s[12],43); s[12] = ROL2(s[13],25); |
||||
s[13] = ROL8(s[19]); s[19] = ROR8(s[23]); s[23] = ROL2(s[15],41); s[15] = ROL2(s[ 4],27); |
||||
s[ 4] = ROL2(s[24],14); s[24] = ROL2(s[21], 2); s[21] = ROL2(s[ 8],55); s[ 8] = ROL2(s[16],45); |
||||
s[16] = ROL2(s[ 5],36); s[ 5] = ROL2(s[ 3],28); s[ 3] = ROL2(s[18],21); s[18] = ROL2(s[17],15); |
||||
s[17] = ROL2(s[11],10); s[11] = ROL2(s[ 7], 6); s[ 7] = ROL2(s[10], 3); s[10] = ROL2(v, 1); |
||||
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
||||
#pragma unroll 5 |
||||
for(int j=0; j<25; j+=5) { |
||||
v=s[j];w=s[j + 1]; s[j] = chi(v,w,s[j+2]); s[j+1] = chi(w,s[j+2],s[j+3]); s[j+2]=chi(s[j+2],s[j+3],s[j+4]); s[j+3]=chi(s[j+3],s[j+4],v); s[j+4]=chi(s[j+4],v,w); |
||||
} |
||||
/* iota: a[0,0] ^= round constant */ |
||||
s[ 0] ^=keccak_round_constants[ i]; |
||||
} |
||||
keccak_gpu_state[4] = 0x0000000000000001; |
||||
keccak_gpu_state[16] = 0x8000000000000000; |
||||
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ |
||||
#pragma unroll 5 |
||||
for(int j=0;j<5;j++) { |
||||
t[ j] = xor3x(xor3x(s[j+0],s[j+5],s[j+10]), s[j+15], s[j+20]); |
||||
} |
||||
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ |
||||
#pragma unroll 5 |
||||
for(int j=0;j<5;j++) { |
||||
u[j] = ROL2(t[j],1); |
||||
} |
||||
/* thetarho pi: b[..] = rotl(a[..] ^ d[...], ..) //There's no need to perform theta and -store- the result since it's unique for each a[..]*/ |
||||
s[ 4] = xor3x(s[24], t[3], u[0]); |
||||
s[ 0] = xor3x(s[ 0], t[4], u[1]); |
||||
s[ 1] = xor3x(s[ 6], t[0], u[2]); |
||||
s[ 2] = xor3x(s[12], t[1], u[3]); |
||||
s[ 3] = xor3x(s[18], t[2], u[4]); |
||||
s[ 1] = ROR2(s[ 1],20); |
||||
s[ 2] = ROR2(s[ 2],21); |
||||
s[ 3] = ROL2(s[ 3],21); |
||||
s[ 4] = ROL2(s[ 4],14); |
||||
|
||||
keccak_blockv30(keccak_gpu_state, keccak_round_constants); |
||||
#pragma unroll 4 |
||||
for (int i = 0; i<4; i++) |
||||
outputHash[i*threads + thread] = keccak_gpu_state[i]; |
||||
#endif |
||||
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
||||
outputHash[0*threads+thread] = chi(s[ 0],s[ 1],s[ 2]) ^ keccak_round_constants[23]; |
||||
outputHash[1*threads+thread] = chi(s[ 1],s[ 2],s[ 3]); |
||||
outputHash[2*threads+thread] = chi(s[ 2],s[ 3],s[ 4]); |
||||
outputHash[3*threads+thread] = chi(s[ 3],s[ 4],s[ 0]); |
||||
} |
||||
} |
||||
|
||||
__host__ |
||||
void keccak256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order) |
||||
void keccak256_cpu_hash_32(const int thr_id,const uint32_t threads, uint2* d_hash) |
||||
{ |
||||
const uint32_t threadsperblock = 256; |
||||
uint32_t tpb = TPB52; |
||||
if (device_sm[device_map[thr_id]] == 500) tpb = TPB50; |
||||
const dim3 grid((threads + tpb-1)/tpb); |
||||
const dim3 block(tpb); |
||||
|
||||
dim3 grid((threads + threadsperblock - 1) / threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
keccak256_gpu_hash_32 <<<grid, block>>> (threads, d_hash); |
||||
} |
||||
|
||||
keccak256_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash); |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
__host__ |
||||
void keccak256_setBlock_80(uint64_t *endiandata) |
||||
{ |
||||
uint64_t midstate[17], s[25]; |
||||
uint64_t t[5], u[5]; |
||||
|
||||
s[10] = 1; //(uint64_t)make_uint2(1, 0); |
||||
s[16] = ((uint64_t)1)<<63; //(uint64_t)make_uint2(0, 0x80000000); |
||||
|
||||
t[0] = endiandata[0] ^ endiandata[5] ^ s[10]; |
||||
t[1] = endiandata[1] ^ endiandata[6] ^ s[16]; |
||||
t[2] = endiandata[2] ^ endiandata[7]; |
||||
t[3] = endiandata[3] ^ endiandata[8]; |
||||
|
||||
midstate[ 0] = ROTL64(t[1], 1); //u[0] -partial |
||||
u[1] = t[ 0] ^ ROTL64(t[2], 1); //u[1] |
||||
u[2] = t[ 1] ^ ROTL64(t[3], 1); //u[2] |
||||
midstate[ 1] = t[ 2]; //u[3] -partial |
||||
midstate[ 2] = t[ 3] ^ ROTL64(t[0], 1); //u[4] |
||||
midstate[ 3] = ROTL64(endiandata[1]^u[1], 1); //v |
||||
midstate[ 4] = ROTL64(endiandata[6]^u[1], 44); |
||||
midstate[ 5] = ROTL64(endiandata[2]^u[2], 62); |
||||
midstate[ 6] = ROTL64(u[2], 61); |
||||
midstate[ 7] = ROTL64(midstate[2], 39); |
||||
midstate[ 8] = ROTL64(u[2], 43); |
||||
midstate[ 9] = ROTL64(midstate[2], 8); |
||||
midstate[10] = ROTL64(endiandata[4]^midstate[ 2],27); |
||||
midstate[11] = ROTL64(midstate[2], 14); |
||||
midstate[12] = ROTL64(u[1], 2); |
||||
midstate[13] = ROTL64(s[16] ^ u[1], 45); |
||||
midstate[14] = ROTL64(u[2],15); |
||||
midstate[15] = ROTL64(u[1],10); |
||||
midstate[16] = ROTL64(endiandata[7]^u[2], 6); |
||||
|
||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_mid, midstate,17*sizeof(uint64_t), 0, cudaMemcpyHostToDevice)); |
||||
|
||||
// pass only what's needed |
||||
uint64_t message48[6]; |
||||
message48[0] = endiandata[9]; |
||||
message48[1] = endiandata[4]; |
||||
message48[2] = endiandata[8]; |
||||
message48[3] = endiandata[5]; |
||||
message48[4] = endiandata[3]; |
||||
message48[5] = endiandata[0]; |
||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_message48, message48, 6*sizeof(uint64_t), 0, cudaMemcpyHostToDevice)); |
||||
} |
||||
|
||||
__host__ |
||||
void keccak256_setBlock_80(void *pdata,const void *pTargetIn) |
||||
void keccak256_cpu_init(int thr_id) |
||||
{ |
||||
unsigned char PaddedMessage[80]; |
||||
memcpy(PaddedMessage, pdata, 80); |
||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, pTargetIn, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); |
||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 10*sizeof(uint64_t), 0, cudaMemcpyHostToDevice)); |
||||
CUDA_SAFE_CALL(cudaMalloc(&d_nonces[thr_id], NBN*sizeof(uint32_t))); |
||||
//CUDA_SAFE_CALL(cudaMallocHost(&h_nonces[thr_id], NBN*sizeof(uint32_t))); |
||||
h_nonces[thr_id] = (uint32_t*) malloc(NBN * sizeof(uint32_t)); |
||||
if(h_nonces[thr_id] == NULL) { |
||||
gpulog(LOG_ERR,thr_id,"Host memory allocation failed"); |
||||
exit(EXIT_FAILURE); |
||||
} |
||||
} |
||||
|
||||
__host__ |
||||
void keccak256_cpu_init(int thr_id, uint32_t threads) |
||||
void keccak256_setOutput(int thr_id) |
||||
{ |
||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(keccak_round_constants, host_keccak_round_constants, |
||||
sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice)); |
||||
CUDA_SAFE_CALL(cudaMalloc(&d_KNonce[thr_id], sizeof(uint32_t))); |
||||
CUDA_SAFE_CALL(cudaMallocHost(&d_nounce[thr_id], 1*sizeof(uint32_t))); |
||||
CUDA_SAFE_CALL(cudaMemset(d_nonces[thr_id], 0xff, NBN*sizeof(uint32_t))); |
||||
} |
||||
|
||||
__host__ |
||||
void keccak256_cpu_free(int thr_id) |
||||
{ |
||||
cudaFree(d_KNonce[thr_id]); |
||||
cudaFreeHost(d_nounce[thr_id]); |
||||
cudaFree(d_nonces[thr_id]); |
||||
//cudaFreeHost(h_nonces[thr_id]); |
||||
free(h_nonces[thr_id]); |
||||
} |
||||
|
@ -0,0 +1,309 @@
@@ -0,0 +1,309 @@
|
||||
#include "miner.h" |
||||
|
||||
extern "C" { |
||||
#include <stdint.h> |
||||
#include <memory.h> |
||||
} |
||||
|
||||
#include "cuda_helper.h" |
||||
|
||||
static const uint64_t host_keccak_round_constants[24] = { |
||||
0x0000000000000001ull, 0x0000000000008082ull, |
||||
0x800000000000808aull, 0x8000000080008000ull, |
||||
0x000000000000808bull, 0x0000000080000001ull, |
||||
0x8000000080008081ull, 0x8000000000008009ull, |
||||
0x000000000000008aull, 0x0000000000000088ull, |
||||
0x0000000080008009ull, 0x000000008000000aull, |
||||
0x000000008000808bull, 0x800000000000008bull, |
||||
0x8000000000008089ull, 0x8000000000008003ull, |
||||
0x8000000000008002ull, 0x8000000000000080ull, |
||||
0x000000000000800aull, 0x800000008000000aull, |
||||
0x8000000080008081ull, 0x8000000000008080ull, |
||||
0x0000000080000001ull, 0x8000000080008008ull |
||||
}; |
||||
|
||||
static uint32_t *d_nounce[MAX_GPUS]; |
||||
static uint32_t *d_KNonce[MAX_GPUS]; |
||||
|
||||
__constant__ uint32_t pTarget[8]; |
||||
__constant__ uint64_t keccak_round_constants[24]; |
||||
__constant__ uint64_t c_PaddedMessage80[10]; // padded message (80 bytes + padding?) |
||||
|
||||
#if __CUDA_ARCH__ >= 350 |
||||
__device__ __forceinline__ |
||||
static void keccak_blockv35(uint2 *s, const uint64_t *keccak_round_constants) |
||||
{ |
||||
size_t i; |
||||
uint2 t[5], u[5], v, w; |
||||
|
||||
#pragma unroll |
||||
for (i = 0; i < 24; i++) { |
||||
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ |
||||
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; |
||||
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; |
||||
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; |
||||
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; |
||||
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; |
||||
|
||||
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ |
||||
u[0] = t[4] ^ ROL2(t[1], 1); |
||||
u[1] = t[0] ^ ROL2(t[2], 1); |
||||
u[2] = t[1] ^ ROL2(t[3], 1); |
||||
u[3] = t[2] ^ ROL2(t[4], 1); |
||||
u[4] = t[3] ^ ROL2(t[0], 1); |
||||
|
||||
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ |
||||
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; |
||||
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; |
||||
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; |
||||
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; |
||||
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; |
||||
|
||||
/* rho pi: b[..] = rotl(a[..], ..) */ |
||||
v = s[1]; |
||||
s[1] = ROL2(s[6], 44); |
||||
s[6] = ROL2(s[9], 20); |
||||
s[9] = ROL2(s[22], 61); |
||||
s[22] = ROL2(s[14], 39); |
||||
s[14] = ROL2(s[20], 18); |
||||
s[20] = ROL2(s[2], 62); |
||||
s[2] = ROL2(s[12], 43); |
||||
s[12] = ROL2(s[13], 25); |
||||
s[13] = ROL2(s[19], 8); |
||||
s[19] = ROL2(s[23], 56); |
||||
s[23] = ROL2(s[15], 41); |
||||
s[15] = ROL2(s[4], 27); |
||||
s[4] = ROL2(s[24], 14); |
||||
s[24] = ROL2(s[21], 2); |
||||
s[21] = ROL2(s[8], 55); |
||||
s[8] = ROL2(s[16], 45); |
||||
s[16] = ROL2(s[5], 36); |
||||
s[5] = ROL2(s[3], 28); |
||||
s[3] = ROL2(s[18], 21); |
||||
s[18] = ROL2(s[17], 15); |
||||
s[17] = ROL2(s[11], 10); |
||||
s[11] = ROL2(s[7], 6); |
||||
s[7] = ROL2(s[10], 3); |
||||
s[10] = ROL2(v, 1); |
||||
|
||||
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
||||
v = s[0]; w = s[1]; s[0] ^= (~w) & s[2]; s[1] ^= (~s[2]) & s[3]; s[2] ^= (~s[3]) & s[4]; s[3] ^= (~s[4]) & v; s[4] ^= (~v) & w; |
||||
v = s[5]; w = s[6]; s[5] ^= (~w) & s[7]; s[6] ^= (~s[7]) & s[8]; s[7] ^= (~s[8]) & s[9]; s[8] ^= (~s[9]) & v; s[9] ^= (~v) & w; |
||||
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; |
||||
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; |
||||
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; |
||||
|
||||
/* iota: a[0,0] ^= round constant */ |
||||
s[0] ^= vectorize(keccak_round_constants[i]); |
||||
} |
||||
} |
||||
#else |
||||
|
||||
__device__ __forceinline__ |
||||
static void keccak_blockv30(uint64_t *s, const uint64_t *keccak_round_constants) |
||||
{ |
||||
size_t i; |
||||
uint64_t t[5], u[5], v, w; |
||||
|
||||
/* absorb input */ |
||||
|
||||
for (i = 0; i < 24; i++) { |
||||
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ |
||||
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; |
||||
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; |
||||
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; |
||||
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; |
||||
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; |
||||
|
||||
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ |
||||
u[0] = t[4] ^ ROTL64(t[1], 1); |
||||
u[1] = t[0] ^ ROTL64(t[2], 1); |
||||
u[2] = t[1] ^ ROTL64(t[3], 1); |
||||
u[3] = t[2] ^ ROTL64(t[4], 1); |
||||
u[4] = t[3] ^ ROTL64(t[0], 1); |
||||
|
||||
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ |
||||
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; |
||||
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; |
||||
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; |
||||
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; |
||||
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; |
||||
|
||||
/* rho pi: b[..] = rotl(a[..], ..) */ |
||||
v = s[ 1]; |
||||
s[ 1] = ROTL64(s[ 6], 44); |
||||
s[ 6] = ROTL64(s[ 9], 20); |
||||
s[ 9] = ROTL64(s[22], 61); |
||||
s[22] = ROTL64(s[14], 39); |
||||
s[14] = ROTL64(s[20], 18); |
||||
s[20] = ROTL64(s[ 2], 62); |
||||
s[ 2] = ROTL64(s[12], 43); |
||||
s[12] = ROTL64(s[13], 25); |
||||
s[13] = ROTL64(s[19], 8); |
||||
s[19] = ROTL64(s[23], 56); |
||||
s[23] = ROTL64(s[15], 41); |
||||
s[15] = ROTL64(s[ 4], 27); |
||||
s[ 4] = ROTL64(s[24], 14); |
||||
s[24] = ROTL64(s[21], 2); |
||||
s[21] = ROTL64(s[ 8], 55); |
||||
s[ 8] = ROTL64(s[16], 45); |
||||
s[16] = ROTL64(s[ 5], 36); |
||||
s[ 5] = ROTL64(s[ 3], 28); |
||||
s[ 3] = ROTL64(s[18], 21); |
||||
s[18] = ROTL64(s[17], 15); |
||||
s[17] = ROTL64(s[11], 10); |
||||
s[11] = ROTL64(s[ 7], 6); |
||||
s[ 7] = ROTL64(s[10], 3); |
||||
s[10] = ROTL64( v, 1); |
||||
|
||||
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
||||
v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w; |
||||
v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w; |
||||
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; |
||||
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; |
||||
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; |
||||
|
||||
/* iota: a[0,0] ^= round constant */ |
||||
s[0] ^= keccak_round_constants[i]; |
||||
} |
||||
} |
||||
#endif |
||||
|
||||
__global__ __launch_bounds__(128,5) |
||||
void keccak256_sm3_gpu_hash_80(uint32_t threads, uint32_t startNounce, void *outputHash, uint32_t *resNounce) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
uint32_t nounce = startNounce + thread; |
||||
|
||||
#if __CUDA_ARCH__ >= 350 |
||||
uint2 keccak_gpu_state[25]; |
||||
#pragma unroll 25 |
||||
for (int i=0; i<25; i++) { |
||||
if (i<9) keccak_gpu_state[i] = vectorize(c_PaddedMessage80[i]); |
||||
else keccak_gpu_state[i] = make_uint2(0, 0); |
||||
} |
||||
|
||||
keccak_gpu_state[9]= vectorize(c_PaddedMessage80[9]); |
||||
keccak_gpu_state[9].y = cuda_swab32(nounce); |
||||
keccak_gpu_state[10] = make_uint2(1, 0); |
||||
keccak_gpu_state[16] = make_uint2(0, 0x80000000); |
||||
|
||||
keccak_blockv35(keccak_gpu_state,keccak_round_constants); |
||||
if (devectorize(keccak_gpu_state[3]) <= ((uint64_t*)pTarget)[3]) {resNounce[0] = nounce;} |
||||
#else |
||||
uint64_t keccak_gpu_state[25]; |
||||
#pragma unroll 25 |
||||
for (int i=0; i<25; i++) { |
||||
if (i<9) keccak_gpu_state[i] = c_PaddedMessage80[i]; |
||||
else keccak_gpu_state[i] = 0; |
||||
} |
||||
keccak_gpu_state[9] = REPLACE_HIDWORD(c_PaddedMessage80[9], cuda_swab32(nounce)); |
||||
keccak_gpu_state[10] = 0x0000000000000001; |
||||
keccak_gpu_state[16] = 0x8000000000000000; |
||||
|
||||
keccak_blockv30(keccak_gpu_state, keccak_round_constants); |
||||
if (keccak_gpu_state[3] <= ((uint64_t*)pTarget)[3]) { resNounce[0] = nounce; } |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
__host__ |
||||
uint32_t keccak256_sm3_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_outputHash, int order) |
||||
{ |
||||
uint32_t result = UINT32_MAX; |
||||
cudaMemset(d_KNonce[thr_id], 0xff, sizeof(uint32_t)); |
||||
const uint32_t threadsperblock = 128; |
||||
|
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
size_t shared_size = 0; |
||||
|
||||
keccak256_sm3_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash, d_KNonce[thr_id]); |
||||
|
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
cudaMemcpy(d_nounce[thr_id], d_KNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
||||
cudaThreadSynchronize(); |
||||
result = *d_nounce[thr_id]; |
||||
|
||||
return result; |
||||
} |
||||
|
||||
__global__ __launch_bounds__(256,3) |
||||
void keccak256_sm3_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
#if __CUDA_ARCH__ >= 350 /* tpr: to double check if faster on SM5+ */ |
||||
uint2 keccak_gpu_state[25]; |
||||
#pragma unroll 25 |
||||
for (int i = 0; i<25; i++) { |
||||
if (i<4) keccak_gpu_state[i] = vectorize(outputHash[i*threads+thread]); |
||||
else keccak_gpu_state[i] = make_uint2(0, 0); |
||||
} |
||||
keccak_gpu_state[4] = make_uint2(1, 0); |
||||
keccak_gpu_state[16] = make_uint2(0, 0x80000000); |
||||
keccak_blockv35(keccak_gpu_state, keccak_round_constants); |
||||
|
||||
#pragma unroll 4 |
||||
for (int i=0; i<4; i++) |
||||
outputHash[i*threads+thread] = devectorize(keccak_gpu_state[i]); |
||||
#else |
||||
uint64_t keccak_gpu_state[25]; |
||||
#pragma unroll 25 |
||||
for (int i = 0; i<25; i++) { |
||||
if (i<4) |
||||
keccak_gpu_state[i] = outputHash[i*threads+thread]; |
||||
else |
||||
keccak_gpu_state[i] = 0; |
||||
} |
||||
keccak_gpu_state[4] = 0x0000000000000001; |
||||
keccak_gpu_state[16] = 0x8000000000000000; |
||||
|
||||
keccak_blockv30(keccak_gpu_state, keccak_round_constants); |
||||
#pragma unroll 4 |
||||
for (int i = 0; i<4; i++) |
||||
outputHash[i*threads + thread] = keccak_gpu_state[i]; |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
__host__ |
||||
void keccak256_sm3_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order) |
||||
{ |
||||
const uint32_t threadsperblock = 256; |
||||
|
||||
dim3 grid((threads + threadsperblock - 1) / threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
keccak256_sm3_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_outputHash); |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
|
||||
__host__ |
||||
void keccak256_sm3_setBlock_80(void *pdata,const void *pTargetIn) |
||||
{ |
||||
unsigned char PaddedMessage[80]; |
||||
memcpy(PaddedMessage, pdata, 80); |
||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(pTarget, pTargetIn, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); |
||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 10*sizeof(uint64_t), 0, cudaMemcpyHostToDevice)); |
||||
} |
||||
|
||||
__host__ |
||||
void keccak256_sm3_init(int thr_id, uint32_t threads) |
||||
{ |
||||
CUDA_SAFE_CALL(cudaMemcpyToSymbol(keccak_round_constants, host_keccak_round_constants, |
||||
sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice)); |
||||
CUDA_SAFE_CALL(cudaMalloc(&d_KNonce[thr_id], sizeof(uint32_t))); |
||||
CUDA_SAFE_CALL(cudaMallocHost(&d_nounce[thr_id], 1*sizeof(uint32_t))); |
||||
} |
||||
|
||||
__host__ |
||||
void keccak256_sm3_free(int thr_id) |
||||
{ |
||||
cudaFree(d_KNonce[thr_id]); |
||||
cudaFreeHost(d_nounce[thr_id]); |
||||
} |
Loading…
Reference in new issue