Browse Source

vanilla: sync with MrM4D, remove SSE2 midstate computation

was not useful and hard to read...
2upstream
alexis78 9 years ago committed by Tanguy Pruvot
parent
commit
be1f64446a
  1. 581
      Algo256/vanilla.cu
  2. 3
      ccminer.cpp

581
Algo256/vanilla.cu

@ -2,16 +2,18 @@
* Optimized Blake-256 8-rounds Cuda Kernel (Tested on SM >3.0) * Optimized Blake-256 8-rounds Cuda Kernel (Tested on SM >3.0)
* Based upon Blake-256 implementation of Tanguy Pruvot - Nov. 2014 * Based upon Blake-256 implementation of Tanguy Pruvot - Nov. 2014
* *
* midstate computation inherited from
* https://github.com/wfr/clblake
*
* Provos Alexis - Jan. 2016 * Provos Alexis - Jan. 2016
* Reviewed by tpruvot - Feb 2016 *
* Fixed CUDA 7.5 flaw
* minor code changes
* code cleanup
* increased nonces per thread
* removed SSE2 midstate computation
* Provos Alexis - Mar 2016
*/ */
#include <stdint.h> #include <stdint.h>
#include <memory.h> #include <memory.h>
#include <emmintrin.h>
#include "miner.h" #include "miner.h"
@ -25,20 +27,20 @@ extern "C" {
#define __byte_perm(x, y, b) x #define __byte_perm(x, y, b) x
#endif #endif
/* threads per block and "magic" */ /* threads per block and nonces per thread */
#define TPB 768 #define TPB 768
#define NPT 224 #define NPT 384
#define NBN 2 #define NBN 2
__constant__ uint32_t d_data[16]; __constant__ uint32_t _ALIGN(16) d_data[21];
/* 16 gpu threads max */ /* 16 gpu threads max */
static uint32_t *d_resNonce[MAX_GPUS]; static uint32_t *d_resNonce[MAX_GPUS];
static uint32_t *h_resNonce[MAX_GPUS]; static uint32_t *h_resNonce[MAX_GPUS];
static cudaStream_t streams[MAX_GPUS];
/* hash by cpu with blake 256 */ /* hash by cpu with blake 256 */
extern "C" void vanillahash(void *output, const void *input, int8_t blakerounds) extern "C" void vanillahash(void *output, const void *input, int8_t blakerounds){
{
uchar hash[64]; uchar hash[64];
sph_blake256_context ctx; sph_blake256_context ctx;
@ -50,276 +52,320 @@ extern "C" void vanillahash(void *output, const void *input, int8_t blakerounds)
memcpy(output, hash, 32); memcpy(output, hash, 32);
} }
#define GS4(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2,a3,b3,c3,d3,x3,y3) { \
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \
v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \
v[a3]+= (m[x3] ^ z[y3]) + v[b3]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x1032); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
v[c2]+= v[d2]; \
v[c3]+= v[d3]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[b2] = ROTR32(v[b2] ^ v[c2], 12); \
v[b3] = ROTR32(v[b3] ^ v[c3], 12); \
\
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \
v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \
v[a3]+= (m[y3] ^ z[x3]) + v[b3]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x0321); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
v[c2]+= v[d2]; \
v[c3]+= v[d3]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
v[b2] = ROTR32(v[b2] ^ v[c2], 7); \
v[b3] = ROTR32(v[b3] ^ v[c3], 7); \
}
__global__ __launch_bounds__(TPB,1) #define GS3(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2) { \
void vanilla_gpu_hash_16_8(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,const uint32_t highTarget) v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \
{ v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \
uint32_t v[16]; v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \
uint32_t tmp[13]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
const uint32_t step = gridDim.x * blockDim.x; v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \
const uint32_t maxNonce = startNonce + threads; \
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
v[c2]+= v[d2]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[b2] = ROTR32(v[b2] ^ v[c2], 12); \
\
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \
v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
v[c2]+= v[d2]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
v[b2] = ROTR32(v[b2] ^ v[c2], 7); \
}
const uint32_t c_u256[16] = { #define GS2(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1) { \
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \
}; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
\
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
const uint32_t h0 = d_data[0]; const uint32_t h1 = d_data[1]; #define GS(a,b,c,d,x,y) { \
const uint32_t h2 = d_data[2]; const uint32_t h3 = d_data[3]; v[a] += (m[x] ^ z[y]) + v[b]; \
const uint32_t h4 = d_data[4]; //const uint32_t h5 = d_data[5]; no need
const uint32_t h6 = d_data[5]; const uint32_t h7 = d_data[6];
const uint32_t m0 = d_data[7]; const uint32_t m1 = d_data[8];
const uint32_t m2 = d_data[9]; //le' nonce
const uint32_t m4 = 0x80000000UL; const uint32_t m5 = 0;
const uint32_t m6 = 0; const uint32_t m7 = 0;
const uint32_t m8 = 0; const uint32_t m9 = 0;
const uint32_t m10 = 0; const uint32_t m11 = 0;
const uint32_t m12 = 0; const uint32_t m13 = 1;
const uint32_t m14 = 0; const uint32_t m15 = 640;
//---MORE PRECOMPUTATIONS
tmp[ 0] = d_data[10]; tmp[ 1] = d_data[11];
tmp[ 2] = d_data[12]; tmp[ 3] = c_u256[1] + tmp[2];
tmp[ 4] = d_data[13]; tmp[ 5] = d_data[14];
tmp[ 6] = c_u256[2] + tmp[5]; tmp[ 7] = d_data[15];
tmp[ 5] = __byte_perm(tmp[5] ^ h2,0, 0x0321); tmp[ 6] += tmp[5];
tmp[ 7] = ROTR32(tmp[7] ^ tmp[6],7); tmp[ 8] = __byte_perm(c_u256[7] ^ h3,0, 0x1032);
tmp[ 9] = c_u256[3] + tmp[8]; tmp[10] = ROTR32(h7 ^ tmp[9], 12);
tmp[11] = h3 + c_u256[6] + tmp[10];
tmp[ 8] = __byte_perm(tmp[8] ^ tmp[11],0, 0x0321); tmp[ 9] += tmp[8];
tmp[10] = ROTR32(tmp[10] ^ tmp[9],7);
//---END OF MORE PRECOMPUTATIONS
for(uint64_t m3 = startNonce + thread ; m3<maxNonce ; m3+=step){
//All i need is, h0,h1,h2,h4,h6,h7,m0,m1,m2 ++ tmps (13) //22 vars
v[0] = h0; v[1] = h1; v[2] = h2; v[3] = tmp[11];
v[4] = h4; v[5] = tmp[4]; v[6] = tmp[7]; v[7] = tmp[10];
v[8] = tmp[1]; v[9] = tmp[3]; v[10] = tmp[6]; v[11] = tmp[9];
v[12] = tmp[0]; v[13] = tmp[2]; v[14] = tmp[5]; v[15] = tmp[8];
v[ 1] += m3 ^ c_u256[2]; v[13] = __byte_perm(v[13] ^ v[1],0, 0x0321);v[ 9] += v[13]; v[5] = ROTR32(v[5] ^ v[9], 7);
v[ 0] += v[5]; v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032);v[10] += v[15]; v[5] = ROTR32(v[5] ^ v[10], 12);
v[ 0] += c_u256[8] + v[5]; v[15] = __byte_perm(v[15] ^ v[0],0, 0x0321);v[10] += v[15]; v[5] = ROTR32(v[5] ^ v[10], 7);
#define GSPREC(a,b,c,d,x,y) { \
v[a] += (m##x ^ c_u256[y]) + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a],0, 0x1032); \ v[d] = __byte_perm(v[d] ^ v[a],0, 0x1032); \
v[c] += v[d]; \ v[c] += v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 12); \ v[b] = ROTR32(v[b] ^ v[c], 12); \
v[a] += (m##y ^ c_u256[x]) + v[b]; \ v[a] += (m[y] ^ z[x]) + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a],0, 0x0321); \ v[d] = __byte_perm(v[d] ^ v[a],0, 0x0321); \
v[c] += v[d]; \ v[c] += v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 7); \ v[b] = ROTR32(v[b] ^ v[c], 7); \
} }
GSPREC(1, 6, 11, 12, 10, 11); GSPREC(2, 7, 8, 13, 12, 13); GSPREC(3, 4, 9, 14, 14, 15); __global__ __launch_bounds__(TPB,1)
// { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, void vanilla_gpu_hash_16_8(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,const uint64_t highTarget){
GSPREC(0, 4, 8, 12, 14, 10); GSPREC(1, 5, 9, 13, 4, 8); GSPREC(2, 6, 10, 14, 9, 15); GSPREC(3, 7, 11, 15, 13, 6); uint32_t _ALIGN(16) v[16];
GSPREC(0, 5, 10, 15, 1, 12); GSPREC(1, 6, 11, 12, 0, 2); GSPREC(2, 7, 8, 13, 11, 7); GSPREC(3, 4, 9, 14, 5, 3); uint32_t _ALIGN(16) tmp[16];
// { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
GSPREC(0, 4, 8, 12, 11, 8); GSPREC(1, 5, 9, 13, 12, 0); GSPREC(2, 6, 10, 14, 5, 2); GSPREC(3, 7, 11, 15, 15, 13); const size_t thread = blockDim.x * blockIdx.x + threadIdx.x;
GSPREC(0, 5, 10, 15, 10, 14); GSPREC(1, 6, 11, 12, 3, 6); GSPREC(2, 7, 8, 13, 7, 1); GSPREC(3, 4, 9, 14, 9, 4); const uint64_t step = gridDim.x * blockDim.x;
// { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, const uint64_t maxNonce = startNonce + threads;
GSPREC(0, 4, 8, 12, 7, 9); GSPREC(1, 5, 9, 13, 3, 1); GSPREC(2, 6, 10, 14, 13, 12); GSPREC(3, 7, 11, 15, 11, 14);
GSPREC(0, 5, 10, 15, 2, 6); GSPREC(1, 6, 11, 12, 5, 10); GSPREC(2, 7, 8, 13, 4, 0); GSPREC(3, 4, 9, 14, 15, 8); const int8_t r[][16] = {
// { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
GSPREC(0, 4, 8, 12, 9, 0); GSPREC(1, 5, 9, 13, 5, 7); GSPREC(2, 6, 10, 14, 2, 4); GSPREC(3, 7, 11, 15, 10, 15); { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
GSPREC(0, 5, 10, 15, 14, 1); GSPREC(1, 6, 11, 12, 11, 12); GSPREC(2, 7, 8, 13, 6, 8); GSPREC(3, 4, 9, 14, 3, 13); { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
// { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }
GSPREC(0, 4, 8, 12, 2, 12); GSPREC(1, 5, 9, 13, 6, 10); GSPREC(2, 6, 10, 14, 0, 11); GSPREC(3, 7, 11, 15, 8, 3); };
GSPREC(0, 5, 10, 15, 4, 13); GSPREC(1, 6, 11, 12, 7, 5); GSPREC(2, 7, 8, 13, 15, 14); GSPREC(3, 4, 9, 14, 1, 9); const uint32_t z[16] = {
// { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, 0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
GSPREC(0, 4, 8, 12, 12, 5); GSPREC(1, 5, 9, 13, 1, 15); GSPREC(2, 6, 10, 14, 14, 13); GSPREC(3, 7, 11, 15, 4, 10); 0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
GSPREC(0, 5, 10, 15, 0, 7); GSPREC(1, 6, 11, 12, 6, 3); GSPREC(2, 7, 8, 13, 9, 2); GSPREC(3, 4, 9, 14, 8, 11); };
// { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
GSPREC(0, 4, 8, 12, 13, 11); GSPREC(1, 5, 9, 13, 7, 14); GSPREC(2, 6, 10, 14, 12, 1); GSPREC(3, 7, 11, 15, 3, 9); //PREFETCH
#pragma unroll
v[ 0] += (m5 ^ c_u256[0]) + v[5]; v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032); for(int i=0;i<16;i++){
v[10] += v[15]; v[ 5] = ROTR32(v[5] ^ v[10], 12); tmp[ i] = d_data[ i];
v[ 0] += (m0 ^ c_u256[5]) + v[5]; v[15] = __byte_perm(v[15] ^ v[0],0, 0x0321); }
v[2] += (m8 ^ c_u256[6]) + v[7]; v[13] = __byte_perm(v[13] ^ v[2],0, 0x1032); uint32_t m[16] = {
v[8] += v[13]; v[ 7] = ROTR32(v[7] ^ v[8], 12); d_data[16], d_data[17], d_data[18], 0,
v[2] += (m6 ^ c_u256[8]) + v[7]; v[13] = __byte_perm(v[13] ^ v[2],0, 0x0321); 0x80000000UL, 0, 0, 0,
v[8] += v[13]; v[ 7] = ROTR32(v[7] ^ v[8], 7); 0, 0, 0, 0,
0, 1, 0, 640
};
const uint32_t h7 = d_data[19];
const uint32_t h6 = d_data[20];
//END OF PREFETCH
uint64_t m3 = startNonce + thread;
loopstart:
if(m3>=maxNonce)return;
m[3] = m3;
#pragma unroll
for(int i=0;i<16;i++)
v[ i] = tmp[ i];
v[ 1]+= m[3] ^ z[2];
v[13] = __byte_perm(v[13] ^ v[1],0, 0x0321);
v[ 9]+= v[13];
v[ 5] = ROTR32(v[5] ^ v[9], 7);
v[ 0]+= v[5];
v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032);
v[10]+= v[15];
v[ 5] = ROTR32(v[5] ^ v[10], 12);
v[ 0]+= z[8] + v[5];
v[15] = __byte_perm(v[15] ^ v[0],0, 0x0321);
v[10]+= v[15];
v[ 5] = ROTR32(v[5] ^ v[10], 7);
GS3( 1, 6,11,12,10,11, 2, 7, 8,13,12,13, 3, 4, 9,14,14,15);
#pragma unroll
for(int i=0;i<6;i++){
GS4(0, 4, 8,12,r[i][ 0],r[i][ 1], 1, 5, 9,13,r[i][ 2],r[i][ 3], 2, 6,10,14,r[i][ 4],r[i][ 5], 3, 7,11,15,r[i][ 6],r[i][ 7]);
GS4(0, 5,10,15,r[i][ 8],r[i][ 9], 1, 6,11,12,r[i][10],r[i][11], 2, 7, 8,13,r[i][12],r[i][13], 3, 4, 9,14,r[i][14],r[i][15]);
}
GS4(0, 4, 8,12,r[6][ 0],r[6][ 1], 1, 5, 9,13,r[6][ 2],r[6][ 3], 2, 6,10,14,r[6][ 4],r[6][ 5], 3, 7,11,15,r[6][ 6],r[6][ 7]);
v[ 0] += (m[ 5] ^ z[0]) + v[5];
v[ 2] += (m[ 8] ^ z[6]) + v[7];
v[13] = __byte_perm(v[13] ^ v[2],0, 0x1032);
v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032);
v[ 8] += v[13];
v[10] += v[15];
v[ 5] = ROTR32(v[ 5] ^ v[10], 12);
v[ 7] = ROTR32(v[ 7] ^ v[ 8], 12);
v[ 0] += (m[ 0] ^ z[5]) + v[5];
v[ 2] += (m[ 6] ^ z[8]) + v[7];
v[15] = __byte_perm(v[15] ^ v[ 0],0, 0x0321);
v[13] = __byte_perm(v[13] ^ v[ 2],0, 0x0321);
v[8] += v[13];
v[7] = ROTR32(v[7] ^ v[8], 7);
// only compute h6 & 7 // only compute h6 & 7
if((h7^v[7]^v[15])==0){ if((v[15]^h7)==v[7]){
GSPREC(1, 6, 11, 12, 15, 4); v[ 1] += (m[15] ^ z[ 4]) + v[6];
v[ 3] += (m2 ^ c_u256[10]) + v[4]; v[ 3] += (m[2] ^ z[10]) + v[4];
v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x1032);
v[14] = __byte_perm(v[14] ^ v[3],0, 0x1032); v[14] = __byte_perm(v[14] ^ v[3],0, 0x1032);
v[11] += v[12];
v[ 9] += v[14]; v[ 9] += v[14];
v[ 4] = ROTR32(v[4] ^ v[9],12); v[ 6] = ROTR32(v[ 6] ^ v[11], 12);
v[ 3] += (m10 ^ c_u256[2]) + v[4];
v[ 1] += (m[ 4] ^ z[15]) + v[ 6];
v[ 3] += (m[10] ^ z[ 2]) + ROTR32(v[ 4] ^ v[ 9],12);
v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x0321);
v[14] = __byte_perm(v[14] ^ v[ 3],0, 0x0321); v[14] = __byte_perm(v[14] ^ v[ 3],0, 0x0321);
v[11] += v[12];
v[ 6] = ROTR32(v[ 6] ^ v[11], 7);
if(cuda_swab32(h6^v[6]^v[14]) <= highTarget) { if(cuda_swab32(h6^v[6]^v[14]) <= highTarget) {
#if NBN == 2 #if NBN == 2
/* keep the smallest nonce, + extra one if found */ /* keep the smallest nonce, + extra one if found */
if (m3 < resNonce[0]){ if (m[3] < resNonce[0]){
resNonce[1] = resNonce[0]; resNonce[1] = resNonce[0];
resNonce[0] = m3; resNonce[0] = m[3];
} }
else else
resNonce[1] = m3; resNonce[1] = m[3];
#else #else
resNonce[0] = m3; resNonce[0] = m[3];
#endif #endif
return; //<-- this may cause a problem on extranonce if the extranonce is on position current_nonce + X * step where X=[1,2,3..,N]
} }
} }
} m3+=step;
goto loopstart;
} }
__host__
void vanilla_cpu_setBlock_16(const int thr_id,const uint32_t* endiandata, uint32_t *penddata){
#define round(r) \ const uint32_t _ALIGN(64) z[16] = {
/* column step */ \ SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344),
buf1 = _mm_set_epi32(m.u32[sig[r][ 6]], m.u32[sig[r][ 4]], m.u32[sig[r][ 2]], m.u32[sig[r][ 0]]); \ SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
buf2 = _mm_set_epi32(z[sig[r][ 7]], z[sig[r][ 5]], z[sig[r][ 3]],z[sig[r][ 1]]); \ SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
buf1 = _mm_xor_si128( buf1, buf2); \ SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
row1 = _mm_add_epi32( _mm_add_epi32( row1, buf1), row2 ); \ };
buf1 = _mm_set_epi32(z[sig[r][ 6]], z[sig[r][ 4]], z[sig[r][ 2]], z[sig[r][ 0]]); \ uint32_t _ALIGN(64) h[22];
buf2 = _mm_set_epi32(m.u32[sig[r][ 7]], m.u32[sig[r][ 5]], m.u32[sig[r][ 3]], m.u32[sig[r][ 1]]); \
row4 = _mm_xor_si128( row4, row1 ); \ sph_blake256_context ctx;
row4 = _mm_xor_si128(_mm_srli_epi32( row4, 16 ),_mm_slli_epi32( row4, 16 )); \
row3 = _mm_add_epi32( row3, row4 ); \
row2 = _mm_xor_si128( row2, row3 ); \
buf1 = _mm_xor_si128( buf1, buf2); \
row2 = _mm_xor_si128(_mm_srli_epi32( row2, 12 ),_mm_slli_epi32( row2, 20 )); \
row1 = _mm_add_epi32( _mm_add_epi32( row1, buf1), row2 ); \
row4 = _mm_xor_si128( row4, row1 ); \
row4 = _mm_xor_si128(_mm_srli_epi32( row4, 8 ),_mm_slli_epi32( row4, 24 )); \
row3 = _mm_add_epi32( row3, row4 ); \
row4 = _mm_shuffle_epi32( row4, _MM_SHUFFLE(2,1,0,3) ); \
row2 = _mm_xor_si128( row2, row3 ); \
row2 = _mm_xor_si128(_mm_srli_epi32( row2, 7 ),_mm_slli_epi32( row2, 25 )); \
\
row3 = _mm_shuffle_epi32( row3, _MM_SHUFFLE(1,0,3,2) ); \
row2 = _mm_shuffle_epi32( row2, _MM_SHUFFLE(0,3,2,1) ); \
\
/* diagonal step */ \
buf1 = _mm_set_epi32(m.u32[sig[r][14]], m.u32[sig[r][12]], m.u32[sig[r][10]], m.u32[sig[r][ 8]]); \
buf2 = _mm_set_epi32(z[sig[r][15]], z[sig[r][13]], z[sig[r][11]], z[sig[r][ 9]]); \
buf1 = _mm_xor_si128( buf1, buf2); \
row1 = _mm_add_epi32( _mm_add_epi32( row1, buf1 ), row2 ); \
buf1 = _mm_set_epi32(z[sig[r][14]], z[sig[r][12]], z[sig[r][10]], z[sig[r][ 8]]); \
buf2 = _mm_set_epi32(m.u32[sig[r][15]], m.u32[sig[r][13]], m.u32[sig[r][11]], m.u32[sig[r][ 9]]); \
row4 = _mm_xor_si128( row4, row1 ); \
buf1 = _mm_xor_si128( buf1, buf2); \
row4 = _mm_xor_si128(_mm_srli_epi32( row4, 16 ),_mm_slli_epi32( row4, 16 )); \
row3 = _mm_add_epi32( row3, row4 ); \
row2 = _mm_xor_si128( row2, row3 ); \
row2 = _mm_xor_si128(_mm_srli_epi32( row2, 12 ),_mm_slli_epi32( row2, 20 )); \
row1 = _mm_add_epi32( _mm_add_epi32( row1, buf1 ), row2 ); \
row4 = _mm_xor_si128( row4, row1 ); \
row4 = _mm_xor_si128(_mm_srli_epi32( row4, 8 ),_mm_slli_epi32( row4, 24 )); \
row3 = _mm_add_epi32( row3, row4 ); \
row4 = _mm_shuffle_epi32( row4, _MM_SHUFFLE(0,3,2,1) ); \
row2 = _mm_xor_si128( row2, row3 ); \
row2 = _mm_xor_si128(_mm_srli_epi32( row2, 7 ),_mm_slli_epi32( row2, 25 )); \
\
row3 = _mm_shuffle_epi32( row3, _MM_SHUFFLE(1,0,3,2) ); \
row2 = _mm_shuffle_epi32( row2, _MM_SHUFFLE(2,1,0,3) ); \
\
#define LOADU(p) _mm_loadu_si128( (__m128i *)(p) ) sph_blake256_set_rounds(8);
#define BSWAP32(r) do{ \ sph_blake256_init(&ctx);
r = _mm_shufflehi_epi16(r, _MM_SHUFFLE(2, 3, 0, 1));\ sph_blake256(&ctx, endiandata, 64);
r = _mm_shufflelo_epi16(r, _MM_SHUFFLE(2, 3, 0, 1));\
r = _mm_xor_si128(_mm_slli_epi16(r, 8), _mm_srli_epi16(r, 8));\
} while(0)
h[ 0] = ctx.H[0]; h[ 1] = ctx.H[1];
h[ 2] = ctx.H[2]; h[21] = ctx.H[3];
h[ 4] = ctx.H[4]; h[20] = ctx.H[5];
h[19] = ctx.H[6]; h[16] = ctx.H[7];
__host__ uint32_t tmp = h[20];
void vanilla_cpu_setBlock_16(const uint32_t* endiandata, uint32_t *penddata){ h[20] = h[19];
h[19] = h[16];
uint32_t _ALIGN(32) h[16]; h[16] = penddata[ 0];
h[0]=0x6A09E667; h[1]=0xBB67AE85; h[2]=0x3C6EF372; h[3]=0xA54FF53A; h[17] = penddata[ 1];
h[4]=0x510E527F; h[5]=0x9B05688C; h[6]=0x1F83D9AB; h[7]=0x5BE0CD19; h[18] = penddata[ 2];
h[12] = z[ 4] ^ 640;
__m128i row1, row2, row3, row4; h[ 8] = z[ 0];
__m128i buf1, buf2;
h[ 0] += (h[16] ^ z[ 1]) + h[ 4];
union { h[12] = SPH_ROTR32(h[12] ^ h[0],16);
uint32_t u32[16]; h[ 8] += h[12];
__m128i u128[4]; h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 12);
} m; h[ 0] += (h[17] ^ z[ 0]) + h[ 4];
static const int sig[][16] = { h[12] = SPH_ROTR32(h[12] ^ h[0],8);
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } , h[ 8] += h[12];
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } , { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } , h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 7);
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } , { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } , { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } , h[1] += (h[18] ^ z[ 3]) + tmp;
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } , { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } , h[13] = SPH_ROTR32(z[ 5] ^ 640 ^ h[1],16);
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } , { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } h[ 5] = ROTR32(tmp ^ (z[ 1] + h[13]), 12);
};
static const uint32_t z[16] = { h[ 1] += h[ 5];
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, h[ 2] += (0x80000000UL ^ z[ 5]) + h[20];
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
}; h[14] = SPH_ROTR32(z[ 6] ^ h[2], 16);
/* get message */ h[ 6] = z[ 2] + h[14];
m.u128[0] = LOADU(endiandata + 0); h[ 6] = SPH_ROTR32(h[20] ^ h[ 6], 12);
m.u128[1] = LOADU(endiandata + 4);
m.u128[2] = LOADU(endiandata + 8); h[21] += z[ 7] + h[19];
m.u128[3] = LOADU(endiandata + 12); h[ 0] += z[ 9];
BSWAP32(m.u128[0]); BSWAP32(m.u128[1]); BSWAP32(m.u128[2]); BSWAP32(m.u128[3]);
h[ 2] += z[ 4] + h[ 6];
row1 = _mm_set_epi32(h[ 3], h[ 2], h[ 1], h[ 0]);
row2 = _mm_set_epi32(h[ 7], h[ 6], h[ 5], h[ 4]); h[ 9] = z[ 1] + h[13];
row3 = _mm_set_epi32(0x03707344, 0x13198A2E, 0x85A308D3, 0x243F6A88); h[10] = z[ 2] + h[14];
row4 = _mm_set_epi32(0xEC4E6C89, 0x082EFA98, 0x299F31D0^512, 0xA4093822^512);
h[14] = SPH_ROTR32(h[14] ^ h[2],8); //0x0321
round( 0); round( 1); round( 2); h[10]+=h[14];
round( 3); round( 4); round( 5);
round( 6); round( 7); h[ 6] = SPH_ROTR32(h[ 6] ^ h[10],7);
h[15] = SPH_ROTR32(z[ 7] ^ h[21],16);
_mm_store_si128( (__m128i *)m.u32, _mm_xor_si128(row1,row3));
h[0] ^= m.u32[ 0]; h[1] ^= m.u32[ 1]; h[11] = z[ 3] + h[15];
h[2] ^= m.u32[ 2]; h[3] ^= m.u32[ 3]; h[ 7] = SPH_ROTR32(h[19] ^ h[11], 12);
_mm_store_si128( (__m128i *)m.u32, _mm_xor_si128(row2,row4)); h[ 3] = h[21] + h[ 7] + z[ 6];
h[4] ^= m.u32[ 0]; h[5] ^= m.u32[ 1];
h[6] ^= m.u32[ 2]; h[7] ^= m.u32[ 3]; h[15] = SPH_ROTR32(h[15] ^ h[ 3],8);
h[11]+= h[15];
uint32_t tmp = h[5]; h[ 7] = ROTR32(h[ 7] ^ h[11],7);
h[ 5] = h[6];
h[ 6] = h[7]; cudaMemcpyToSymbolAsync(d_data, h, 21*sizeof(uint32_t), 0, cudaMemcpyHostToDevice, streams[thr_id]);
h[ 7] = penddata[0];
h[ 8] = penddata[1];
h[ 9] = penddata[2];
h[10] = SPH_C32(0xA4093822) ^ 640;
h[11] = SPH_C32(0x243F6A88);
h[ 0] += (h[7] ^ SPH_C32(0x85A308D3)) + h[4];
h[10] = SPH_ROTR32(h[10] ^ h[0],16);
h[11] += h[10];
h[ 4] = SPH_ROTR32(h[4] ^ h[11], 12);
h[ 0] += (h[8] ^ SPH_C32(0x243F6A88)) + h[4];
h[10] = SPH_ROTR32(h[10] ^ h[0],8);
h[11] += h[10];
h[ 4] = SPH_ROTR32(h[4] ^ h[11], 7);
h[1] += (h[ 9] ^ SPH_C32(0x03707344)) + tmp;
h[12] = SPH_ROTR32(SPH_C32(0x299F31D0) ^ 640 ^ h[1],16);
h[13] = ROTR32(tmp ^ (SPH_C32(0x85A308D3) + h[12]), 12);
h[ 1] += h[13];
h[ 2] += (0x80000000UL ^ SPH_C32(0x299F31D0)) + h[5];
h[14] = SPH_ROTR32(SPH_C32(0x082EFA98) ^ h[2], 16);
h[15] = SPH_C32(0x13198A2E) + h[14];
h[15] = SPH_ROTR32(h[5] ^ h[15], 12);
h[ 3] += SPH_C32(0xEC4E6C89) + h[6];
h[ 0] += SPH_C32(0x38D01377);
h[ 2] += SPH_C32(0xA4093822) + h[15];
cudaMemcpyToSymbol(d_data, h, 16*sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
} }
static bool init[MAX_GPUS] = { 0 }; static bool init[MAX_GPUS] = { 0 };
@ -331,13 +377,6 @@ extern "C" int scanhash_vanilla(int thr_id, struct work* work, uint32_t max_nonc
const uint32_t first_nonce = pdata[19]; const uint32_t first_nonce = pdata[19];
const uint32_t targetHigh = ptarget[6]; const uint32_t targetHigh = ptarget[6];
int dev_id = device_map[thr_id]; int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 30 : 24;
if (device_sm[dev_id] < 350) intensity = 22;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
int rc = 0;
if (!init[thr_id]) { if (!init[thr_id]) {
cudaSetDevice(dev_id); cudaSetDevice(dev_id);
@ -348,24 +387,34 @@ extern "C" int scanhash_vanilla(int thr_id, struct work* work, uint32_t max_nonc
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR(); CUDA_LOG_ERROR();
} }
CUDA_CALL_OR_RET_X(cudaHostAlloc((void**)&h_resNonce[thr_id], NBN*sizeof(uint32_t), cudaHostAllocMapped),0); CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
CUDA_CALL_OR_RET_X(cudaHostGetDevicePointer((void**)&d_resNonce[thr_id],(void*)h_resNonce[thr_id], 0),0); CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
cudaStreamCreate(&streams[thr_id]);
init[thr_id] = true; init[thr_id] = true;
} }
uint32_t endiandata[20]; uint32_t _ALIGN(64) endiandata[20];
for (int k = 0; k < 16; k++) for (int k = 0; k < 16; k++)
be32enc(&endiandata[k], pdata[k]); be32enc(&endiandata[k], pdata[k]);
vanilla_cpu_setBlock_16(endiandata,&pdata[16]); cudaMemsetAsync(d_resNonce[thr_id], 0xff, sizeof(uint32_t),streams[thr_id]);
vanilla_cpu_setBlock_16(thr_id,endiandata,&pdata[16]);
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 30 : 24;
if (device_sm[dev_id] < 350) intensity = 22;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
cudaMemset(d_resNonce[thr_id], 0xff, sizeof(uint32_t));
const dim3 grid((throughput + (NPT*TPB)-1)/(NPT*TPB)); const dim3 grid((throughput + (NPT*TPB)-1)/(NPT*TPB));
const dim3 block(TPB); const dim3 block(TPB);
int rc = 0;
do { do {
vanilla_gpu_hash_16_8<<<grid,block>>>(throughput, pdata[19], d_resNonce[thr_id], targetHigh); vanilla_gpu_hash_16_8<<<grid,block, 0, streams[thr_id]>>>(throughput, pdata[19], d_resNonce[thr_id], targetHigh);
cudaThreadSynchronize(); cudaMemcpyAsync(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost,streams[thr_id]);
cudaStreamSynchronize(streams[thr_id]);
if (h_resNonce[thr_id][0] != UINT32_MAX){ if (h_resNonce[thr_id][0] != UINT32_MAX){
uint32_t vhashcpu[8]; uint32_t vhashcpu[8];
@ -381,21 +430,19 @@ extern "C" int scanhash_vanilla(int thr_id, struct work* work, uint32_t max_nonc
rc = 1; rc = 1;
work_set_target_ratio(work, vhashcpu); work_set_target_ratio(work, vhashcpu);
*hashes_done = pdata[19] - first_nonce + throughput; *hashes_done = pdata[19] - first_nonce + throughput;
work->nonces[0] = h_resNonce[thr_id][0]; pdata[19] = h_resNonce[thr_id][0];
#if NBN > 1 #if NBN > 1
if (h_resNonce[thr_id][1] != UINT32_MAX) { if (h_resNonce[thr_id][1] != UINT32_MAX) {
work->nonces[1] = h_resNonce[thr_id][1]; be32enc(&endiandata[19], h_resNonce[thr_id][1]);
be32enc(&endiandata[19], work->nonces[1]);
vanillahash(vhashcpu, endiandata, blakerounds); vanillahash(vhashcpu, endiandata, blakerounds);
pdata[21] = h_resNonce[thr_id][1];
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio) { if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio) {
work_set_target_ratio(work, vhashcpu); work_set_target_ratio(work, vhashcpu);
xchg(work->nonces[1], work->nonces[0]); xchg(pdata[19], pdata[21]);
} }
rc = 2; rc = 2;
} }
pdata[21] = work->nonces[1];
#endif #endif
pdata[19] = work->nonces[0];
return rc; return rc;
} }
else { else {

3
ccminer.cpp

@ -802,6 +802,9 @@ static bool submit_upstream_work(CURL *curl, struct work *work)
case ALGO_VANILLA: case ALGO_VANILLA:
// fast algos require that... (todo: regen hash) // fast algos require that... (todo: regen hash)
check_dups = true; check_dups = true;
le32enc(&ntime, work->data[17]);
le32enc(&nonce, work->data[19]);
break;
case ALGO_DECRED: case ALGO_DECRED:
be16enc(&nvote, *((uint16_t*)&work->data[25])); be16enc(&nvote, *((uint16_t*)&work->data[25]));
be32enc(&ntime, work->data[34]); be32enc(&ntime, work->data[34]);

Loading…
Cancel
Save