Browse Source

scrypt: reduce cpu usage (flush/sync)

and do some minimal keccak changes (for jane)
2upstream
Tanguy Pruvot 10 years ago
parent
commit
b1bddb54d6
  1. 72
      scrypt-jane.cpp
  2. 17
      scrypt.cpp
  3. 141
      scrypt/keccak.cu
  4. 18
      scrypt/nv_kernel2.cu
  5. 28
      scrypt/salsa_kernel.cu
  6. 18
      scrypt/titan_kernel.cu

72
scrypt-jane.cpp

@ -514,10 +514,10 @@ int scanhash_scrypt_jane(int thr_id, uint32_t *pdata, const uint32_t *ptarget, u
cuda_scrypt_done(thr_id, nxt); cuda_scrypt_done(thr_id, nxt);
cuda_scrypt_DtoH(thr_id, cuda_X[nxt], nxt, false); cuda_scrypt_DtoH(thr_id, cuda_X[nxt], nxt, false);
cuda_scrypt_flush(thr_id, nxt);
if(!cuda_scrypt_sync(thr_id, cur)) { //cuda_scrypt_flush(thr_id, nxt);
return -1; if(!cuda_scrypt_sync(thr_id, nxt)) {
break;
} }
memcpy(Xbuf[cur].ptr, cuda_X[cur], 128 * throughput); memcpy(Xbuf[cur].ptr, cuda_X[cur], 128 * throughput);
@ -562,51 +562,49 @@ int scanhash_scrypt_jane(int thr_id, uint32_t *pdata, const uint32_t *ptarget, u
cuda_scrypt_serialize(thr_id, nxt); cuda_scrypt_serialize(thr_id, nxt);
pre_keccak512(thr_id, nxt, nonce[nxt], throughput); pre_keccak512(thr_id, nxt, nonce[nxt], throughput);
cuda_scrypt_core(thr_id, nxt, N); cuda_scrypt_core(thr_id, nxt, N);
cuda_scrypt_flush(thr_id, nxt); // required //cuda_scrypt_flush(thr_id, nxt);
if (!cuda_scrypt_sync(thr_id, nxt)) {
break;
}
post_keccak512(thr_id, nxt, nonce[nxt], throughput); post_keccak512(thr_id, nxt, nonce[nxt], throughput);
cuda_scrypt_done(thr_id, nxt); cuda_scrypt_done(thr_id, nxt);
cuda_scrypt_DtoH(thr_id, hash[nxt], nxt, true); cuda_scrypt_DtoH(thr_id, hash[nxt], nxt, true);
cuda_scrypt_flush(thr_id, nxt); // seems required here //cuda_scrypt_flush(thr_id, nxt); // made by cuda_scrypt_sync
if (!cuda_scrypt_sync(thr_id, nxt)) {
if (!cuda_scrypt_sync(thr_id, cur)) { break;
return -1;
} }
} }
if(iteration > 0) for (int i=0; iteration > 0 && i<throughput; i++)
{ {
for(int i=0;i<throughput;++i) { if (hash[cur][8*i+7] <= Htarg && fulltest(&hash[cur][8*i], ptarget))
volatile unsigned char *hashc = (unsigned char *)(&hash[cur][8*i]); {
uint32_t _ALIGN(64) thash[8], tdata[20];
if (hash[cur][8*i+7] <= Htarg && fulltest(&hash[cur][8*i], ptarget)) uint32_t tmp_nonce = nonce[cur] + i;
{
uint32_t _ALIGN(64) thash[8], tdata[20];
uint32_t tmp_nonce = nonce[cur] + i;
for(int z=0;z<20;z++) for(int z=0;z<19;z++)
tdata[z] = bswap_32x4(pdata[z]); tdata[z] = bswap_32x4(pdata[z]);
tdata[19] = bswap_32x4(tmp_nonce); tdata[19] = bswap_32x4(tmp_nonce);
scrypt_pbkdf2_1((unsigned char *)tdata, 80, (unsigned char *)tdata, 80, Xbuf[cur].ptr + 128 * i, 128); scrypt_pbkdf2_1((unsigned char *)tdata, 80, (unsigned char *)tdata, 80, Xbuf[cur].ptr + 128 * i, 128);
scrypt_ROMix_1((scrypt_mix_word_t *)(Xbuf[cur].ptr + 128 * i), (scrypt_mix_word_t *)(Ybuf.ptr), (scrypt_mix_word_t *)(Vbuf.ptr), N); scrypt_ROMix_1((scrypt_mix_word_t *)(Xbuf[cur].ptr + 128 * i), (scrypt_mix_word_t *)(Ybuf.ptr), (scrypt_mix_word_t *)(Vbuf.ptr), N);
scrypt_pbkdf2_1((unsigned char *)tdata, 80, Xbuf[cur].ptr + 128 * i, 128, (unsigned char *)thash, 32); scrypt_pbkdf2_1((unsigned char *)tdata, 80, Xbuf[cur].ptr + 128 * i, 128, (unsigned char *)thash, 32);
if (memcmp(thash, &hash[cur][8*i], 32) == 0) if (memcmp(thash, &hash[cur][8*i], 32) == 0)
{ {
*hashes_done = n - pdata[19]; *hashes_done = n - pdata[19];
pdata[19] = tmp_nonce; pdata[19] = tmp_nonce;
scrypt_free(&Vbuf); scrypt_free(&Vbuf);
scrypt_free(&Ybuf); scrypt_free(&Ybuf);
scrypt_free(&Xbuf[0]); scrypt_free(&Xbuf[1]); scrypt_free(&Xbuf[0]); scrypt_free(&Xbuf[1]);
delete[] data[0]; delete[] data[1]; delete[] data[0]; delete[] data[1];
gettimeofday(tv_end, NULL); gettimeofday(tv_end, NULL);
return 1; return 1;
} else { } else {
applog(LOG_WARNING, "GPU #%d: %s result does not validate on CPU! (i=%d, s=%d)", applog(LOG_WARNING, "GPU #%d: %s result does not validate on CPU! (i=%d, s=%d)",
device_map[thr_id], device_name[thr_id], i, cur); device_map[thr_id], device_name[thr_id], i, cur);
}
} }
} }
} }
@ -615,7 +613,7 @@ int scanhash_scrypt_jane(int thr_id, uint32_t *pdata, const uint32_t *ptarget, u
nxt = (nxt+1)&1; nxt = (nxt+1)&1;
++iteration; ++iteration;
} while (n <= max_nonce && !work_restart[thr_id].restart); } while (n <= max_nonce && !work_restart[thr_id].restart);
out:
scrypt_free(&Vbuf); scrypt_free(&Vbuf);
scrypt_free(&Ybuf); scrypt_free(&Ybuf);
scrypt_free(&Xbuf[0]); scrypt_free(&Xbuf[1]); scrypt_free(&Xbuf[0]); scrypt_free(&Xbuf[1]);

17
scrypt.cpp

@ -802,9 +802,8 @@ int scanhash_scrypt(int thr_id, uint32_t *pdata, const uint32_t *ptarget, unsign
cuda_scrypt_done(thr_id, nxt); cuda_scrypt_done(thr_id, nxt);
cuda_scrypt_DtoH(thr_id, X[nxt], nxt, false); cuda_scrypt_DtoH(thr_id, X[nxt], nxt, false);
cuda_scrypt_flush(thr_id, nxt); //cuda_scrypt_flush(thr_id, nxt);
if(!cuda_scrypt_sync(thr_id, nxt))
if(!cuda_scrypt_sync(thr_id, cur))
{ {
result = -1; result = -1;
break; break;
@ -858,15 +857,19 @@ int scanhash_scrypt(int thr_id, uint32_t *pdata, const uint32_t *ptarget, unsign
pre_sha256(thr_id, nxt, nonce[nxt], throughput); pre_sha256(thr_id, nxt, nonce[nxt], throughput);
cuda_scrypt_core(thr_id, nxt, N); cuda_scrypt_core(thr_id, nxt, N);
cuda_scrypt_flush(thr_id, nxt); // required here ? // cuda_scrypt_flush(thr_id, nxt);
if (!cuda_scrypt_sync(thr_id, nxt)) {
printf("error\n");
result = -1;
break;
}
post_sha256(thr_id, nxt, throughput); post_sha256(thr_id, nxt, throughput);
cuda_scrypt_done(thr_id, nxt); cuda_scrypt_done(thr_id, nxt);
cuda_scrypt_DtoH(thr_id, hash[nxt], nxt, true); cuda_scrypt_DtoH(thr_id, hash[nxt], nxt, true);
cuda_scrypt_flush(thr_id, nxt); // required here ? // cuda_scrypt_flush(thr_id, nxt);
if (!cuda_scrypt_sync(thr_id, nxt)) {
if (!cuda_scrypt_sync(thr_id, cur)) {
printf("error\n"); printf("error\n");
result = -1; result = -1;
break; break;

141
scrypt/keccak.cu

@ -112,19 +112,19 @@ static const uint64_t host_keccak_round_constants[24] = {
}; };
__constant__ uint64_t c_keccak_round_constants[24]; __constant__ uint64_t c_keccak_round_constants[24];
__constant__ uint32_t pdata[20]; __constant__ uint32_t c_data[20];
__device__ __device__
void keccak_block(keccak_hash_state *S, const uint32_t *in) { void keccak_block(keccak_hash_state *S, const uint32_t *in)
size_t i; {
uint64_t *s = S->state, t[5], u[5], v, w; uint64_t *s = S->state, t[5], u[5], v, w;
/* absorb input */ /* absorb input */
#pragma unroll 9 #pragma unroll 9
for (i = 0; i < 72 / 8; i++, in += 2) for (int i = 0; i < 72 / 8; i++, in += 2)
s[i] ^= U32TO64_LE(in); s[i] ^= U32TO64_LE(in);
for (i = 0; i < 24; i++) { for (int i = 0; i < 24; i++) {
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ /* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
@ -186,8 +186,9 @@ void keccak_block(keccak_hash_state *S, const uint32_t *in) {
} }
__device__ __device__
void keccak_hash_init(keccak_hash_state *S) { void keccak_hash_init(keccak_hash_state *S)
#pragma unroll 25 {
#pragma unroll 25
for (int i=0; i<25; ++i) for (int i=0; i<25; ++i)
S->state[i] = 0ULL; S->state[i] = 0ULL;
} }
@ -218,50 +219,62 @@ __device__ void keccak_hash_update64(keccak_hash_state *S, const uint32_t *in) {
mycpy64(S->buffer, in); mycpy64(S->buffer, in);
} }
__device__ void keccak_hash_finish8(keccak_hash_state *S, uint32_t *hash) { __device__
void keccak_hash_finish8(keccak_hash_state *S, uint32_t *hash)
{
S->buffer[8/4] = 0x01; S->buffer[8/4] = 0x01;
#pragma unroll 15 #pragma unroll 15
for (int i=8/4+1; i < 72/4; ++i) S->buffer[i] = 0; for (int i=8/4+1; i < 72/4; ++i) S->buffer[i] = 0;
S->buffer[72/4 - 1] |= 0x80000000; S->buffer[72/4 - 1] |= 0x80000000U;
keccak_block(S, (const uint32_t*)S->buffer); keccak_block(S, (const uint32_t*)S->buffer);
#pragma unroll 8
for (size_t i = 0; i < 64; i += 8) { #pragma unroll 8
for (int i = 0; i < 64; i += 8) {
U64TO32_LE((&hash[i/4]), S->state[i / 8]); U64TO32_LE((&hash[i/4]), S->state[i / 8]);
} }
} }
__device__ void keccak_hash_finish12(keccak_hash_state *S, uint32_t *hash) { __device__
void keccak_hash_finish12(keccak_hash_state *S, uint32_t *hash)
{
S->buffer[12/4] = 0x01; S->buffer[12/4] = 0x01;
#pragma unroll 14 #pragma unroll 14
for (int i=12/4+1; i < 72/4; ++i) S->buffer[i] = 0; for (int i=12/4+1; i < 72/4; ++i) S->buffer[i] = 0;
S->buffer[72/4 - 1] |= 0x80000000; S->buffer[72/4 - 1] |= 0x80000000U;
keccak_block(S, (const uint32_t*)S->buffer); keccak_block(S, (const uint32_t*)S->buffer);
#pragma unroll 8
for (size_t i = 0; i < 64; i += 8) { #pragma unroll 8
for (int i = 0; i < 64; i += 8) {
U64TO32_LE((&hash[i/4]), S->state[i / 8]); U64TO32_LE((&hash[i/4]), S->state[i / 8]);
} }
} }
__device__ void keccak_hash_finish60(keccak_hash_state *S, uint32_t *hash) { __device__
void keccak_hash_finish60(keccak_hash_state *S, uint32_t *hash)
{
S->buffer[60/4] = 0x01; S->buffer[60/4] = 0x01;
#pragma unroll 2 #pragma unroll
for (int i=60/4+1; i < 72/4; ++i) S->buffer[i] = 0; for (int i=60/4+1; i < 72/4; ++i) S->buffer[i] = 0;
S->buffer[72/4 - 1] |= 0x80000000; S->buffer[72/4 - 1] |= 0x80000000U;
keccak_block(S, (const uint32_t*)S->buffer); keccak_block(S, (const uint32_t*)S->buffer);
#pragma unroll 8
for (size_t i = 0; i < 64; i += 8) { #pragma unroll 8
for (int i = 0; i < 64; i += 8) {
U64TO32_LE((&hash[i/4]), S->state[i / 8]); U64TO32_LE((&hash[i/4]), S->state[i / 8]);
} }
} }
__device__ void keccak_hash_finish64(keccak_hash_state *S, uint32_t *hash) { __device__
void keccak_hash_finish64(keccak_hash_state *S, uint32_t *hash)
{
S->buffer[64/4] = 0x01; S->buffer[64/4] = 0x01;
#pragma unroll 1 #pragma unroll
for (int i=64/4+1; i < 72/4; ++i) S->buffer[i] = 0; for (int i=64/4+1; i < 72/4; ++i) S->buffer[i] = 0;
S->buffer[72/4 - 1] |= 0x80000000; S->buffer[72/4 - 1] |= 0x80000000U;
keccak_block(S, (const uint32_t*)S->buffer); keccak_block(S, (const uint32_t*)S->buffer);
#pragma unroll 8
for (size_t i = 0; i < 64; i += 8) { #pragma unroll 8
for (int i = 0; i < 64; i += 8) {
U64TO32_LE((&hash[i/4]), S->state[i / 8]); U64TO32_LE((&hash[i/4]), S->state[i / 8]);
} }
} }
@ -275,7 +288,8 @@ typedef struct pbkdf2_hmac_state_t {
} pbkdf2_hmac_state; } pbkdf2_hmac_state;
__device__ void pbkdf2_hash(uint32_t *hash, const uint32_t *m) { __device__ void pbkdf2_hash(uint32_t *hash, const uint32_t *m)
{
keccak_hash_state st; keccak_hash_state st;
keccak_hash_init(&st); keccak_hash_init(&st);
keccak_hash_update72(&st, m); keccak_hash_update72(&st, m);
@ -284,32 +298,32 @@ __device__ void pbkdf2_hash(uint32_t *hash, const uint32_t *m) {
} }
/* hmac */ /* hmac */
__device__ void pbkdf2_hmac_init80(pbkdf2_hmac_state *st, const uint32_t *key) { __device__
uint32_t pad[72/4]; void pbkdf2_hmac_init80(pbkdf2_hmac_state *st, const uint32_t *key)
size_t i; {
uint32_t pad[72/4] = { 0 };
//#pragma unroll 18
//for (int i = 0; i < 72/4; i++)
// pad[i] = 0;
keccak_hash_init(&st->inner); keccak_hash_init(&st->inner);
keccak_hash_init(&st->outer); keccak_hash_init(&st->outer);
#pragma unroll 18
for (i = 0; i < 72/4; i++)
pad[i] = 0;
/* key > blocksize bytes, hash it */ /* key > blocksize bytes, hash it */
pbkdf2_hash(pad, key); pbkdf2_hash(pad, key);
/* inner = (key ^ 0x36) */ /* inner = (key ^ 0x36) */
/* h(inner || ...) */ /* h(inner || ...) */
#pragma unroll 18 #pragma unroll 18
for (i = 0; i < 72/4; i++) for (int i = 0; i < 72/4; i++)
pad[i] ^= 0x36363636; pad[i] ^= 0x36363636U;
keccak_hash_update72(&st->inner, pad); keccak_hash_update72(&st->inner, pad);
/* outer = (key ^ 0x5c) */ /* outer = (key ^ 0x5c) */
/* h(outer || ...) */ /* h(outer || ...) */
#pragma unroll 18 #pragma unroll 18
for (i = 0; i < 72/4; i++) for (int i = 0; i < 72/4; i++)
pad[i] ^= 0x6a6a6a6a; pad[i] ^= 0x6a6a6a6aU;
keccak_hash_update72(&st->outer, pad); keccak_hash_update72(&st->outer, pad);
} }
@ -370,21 +384,20 @@ __device__ void pbkdf2_statecopy8(pbkdf2_hmac_state *d, pbkdf2_hmac_state *s) {
__global__ __launch_bounds__(128) __global__ __launch_bounds__(128)
void cuda_pre_keccak512(uint32_t *g_idata, uint32_t nonce) void cuda_pre_keccak512(uint32_t *g_idata, uint32_t nonce)
{ {
nonce += (blockIdx.x * blockDim.x) + threadIdx.x;
g_idata += 32 * ((blockIdx.x * blockDim.x) + threadIdx.x);
uint32_t data[20]; uint32_t data[20];
const uint32_t thread = (blockIdx.x * blockDim.x) + threadIdx.x;
nonce += thread;
g_idata += thread * 32;
#pragma unroll #pragma unroll
for (int i=0; i <19; ++i) for (int i=0; i<19; i++)
data[i] = cuda_swab32(pdata[i]); data[i] = cuda_swab32(c_data[i]);
data[19] = cuda_swab32(nonce); data[19] = cuda_swab32(nonce);
// scrypt_pbkdf2_1((const uint8_t*)data, 80, (const uint8_t*)data, 80, (uint8_t*)g_idata, 128); // scrypt_pbkdf2_1((const uint8_t*)data, 80, (const uint8_t*)data, 80, (uint8_t*)g_idata, 128);
pbkdf2_hmac_state hmac_pw, work; pbkdf2_hmac_state hmac_pw;
uint32_t ti[16];
uint32_t be;
/* hmac(password, ...) */ /* hmac(password, ...) */
pbkdf2_hmac_init80(&hmac_pw, data); pbkdf2_hmac_init80(&hmac_pw, data);
@ -393,14 +406,17 @@ void cuda_pre_keccak512(uint32_t *g_idata, uint32_t nonce)
pbkdf2_hmac_update72(&hmac_pw, data); pbkdf2_hmac_update72(&hmac_pw, data);
pbkdf2_hmac_update8(&hmac_pw, data+72/4); pbkdf2_hmac_update8(&hmac_pw, data+72/4);
pbkdf2_hmac_state work;
uint32_t ti[16];
/* U1 = hmac(password, salt || be(i)) */ /* U1 = hmac(password, salt || be(i)) */
be = cuda_swab32(1); uint32_t be = 0x01000000U;//cuda_swab32(1);
pbkdf2_statecopy8(&work, &hmac_pw); pbkdf2_statecopy8(&work, &hmac_pw);
pbkdf2_hmac_update4_8(&work, &be); pbkdf2_hmac_update4_8(&work, &be);
pbkdf2_hmac_finish12(&work, ti); pbkdf2_hmac_finish12(&work, ti);
mycpy64(g_idata, ti); mycpy64(g_idata, ti);
be = cuda_swab32(2); be = 0x02000000U;//cuda_swab32(2);
pbkdf2_statecopy8(&work, &hmac_pw); pbkdf2_statecopy8(&work, &hmac_pw);
pbkdf2_hmac_update4_8(&work, &be); pbkdf2_hmac_update4_8(&work, &be);
pbkdf2_hmac_finish12(&work, ti); pbkdf2_hmac_finish12(&work, ti);
@ -411,22 +427,21 @@ void cuda_pre_keccak512(uint32_t *g_idata, uint32_t nonce)
__global__ __launch_bounds__(128) __global__ __launch_bounds__(128)
void cuda_post_keccak512(uint32_t *g_odata, uint32_t *g_hash, uint32_t nonce) void cuda_post_keccak512(uint32_t *g_odata, uint32_t *g_hash, uint32_t nonce)
{ {
nonce += (blockIdx.x * blockDim.x) + threadIdx.x;
g_odata += 32 * ((blockIdx.x * blockDim.x) + threadIdx.x);
g_hash += 8 * ((blockIdx.x * blockDim.x) + threadIdx.x);
uint32_t data[20]; uint32_t data[20];
#pragma unroll 19 const uint32_t thread = (blockIdx.x * blockDim.x) + threadIdx.x;
for (int i=0; i <19; ++i) g_hash += thread * 8;
data[i] = cuda_swab32(pdata[i]); g_odata += thread * 32;
nonce += thread;
#pragma unroll
for (int i=0; i<19; i++)
data[i] = cuda_swab32(c_data[i]);
data[19] = cuda_swab32(nonce); data[19] = cuda_swab32(nonce);
// scrypt_pbkdf2_1((const uint8_t*)data, 80, (const uint8_t*)g_odata, 128, (uint8_t*)g_hash, 32); // scrypt_pbkdf2_1((const uint8_t*)data, 80, (const uint8_t*)g_odata, 128, (uint8_t*)g_hash, 32);
pbkdf2_hmac_state hmac_pw; pbkdf2_hmac_state hmac_pw;
uint32_t ti[16];
uint32_t be;
/* hmac(password, ...) */ /* hmac(password, ...) */
pbkdf2_hmac_init80(&hmac_pw, data); pbkdf2_hmac_init80(&hmac_pw, data);
@ -435,8 +450,10 @@ void cuda_post_keccak512(uint32_t *g_odata, uint32_t *g_hash, uint32_t nonce)
pbkdf2_hmac_update72(&hmac_pw, g_odata); pbkdf2_hmac_update72(&hmac_pw, g_odata);
pbkdf2_hmac_update56(&hmac_pw, g_odata+72/4); pbkdf2_hmac_update56(&hmac_pw, g_odata+72/4);
uint32_t ti[16];
/* U1 = hmac(password, salt || be(i)) */ /* U1 = hmac(password, salt || be(i)) */
be = cuda_swab32(1); uint32_t be = 0x01000000U;//cuda_swab32(1);
pbkdf2_hmac_update4_56(&hmac_pw, &be); pbkdf2_hmac_update4_56(&hmac_pw, &be);
pbkdf2_hmac_finish60(&hmac_pw, ti); pbkdf2_hmac_finish60(&hmac_pw, ti);
mycpy32(g_hash, ti); mycpy32(g_hash, ti);
@ -455,7 +472,7 @@ extern "C" void prepare_keccak512(int thr_id, const uint32_t host_pdata[20])
checkCudaErrors(cudaMemcpyToSymbol(c_keccak_round_constants, host_keccak_round_constants, sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpyToSymbol(c_keccak_round_constants, host_keccak_round_constants, sizeof(host_keccak_round_constants), 0, cudaMemcpyHostToDevice));
init[thr_id] = true; init[thr_id] = true;
} }
checkCudaErrors(cudaMemcpyToSymbol(pdata, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpyToSymbol(c_data, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
} }
extern "C" void pre_keccak512(int thr_id, int stream, uint32_t nonce, int throughput) extern "C" void pre_keccak512(int thr_id, int stream, uint32_t nonce, int throughput)

18
scrypt/nv_kernel2.cu

@ -54,6 +54,8 @@ void NV2Kernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V)
bool NV2Kernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache) bool NV2Kernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache)
{ {
bool success = true; bool success = true;
bool scrypt = IS_SCRYPT();
bool chacha = IS_SCRYPT_JANE();
// make some constants available to kernel, update only initially and when changing // make some constants available to kernel, update only initially and when changing
static uint32_t prev_N[MAX_GPUS] = { 0 }; static uint32_t prev_N[MAX_GPUS] = { 0 };
@ -77,11 +79,11 @@ bool NV2Kernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr
do do
{ {
if (LOOKUP_GAP == 1) { if (LOOKUP_GAP == 1) {
if (IS_SCRYPT()) nv2_scrypt_core_kernelA<A_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); if (scrypt) nv2_scrypt_core_kernelA<A_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N));
if (IS_SCRYPT_JANE()) nv2_scrypt_core_kernelA<A_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); if (chacha) nv2_scrypt_core_kernelA<A_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N));
} else { } else {
if (IS_SCRYPT()) nv2_scrypt_core_kernelA_LG<A_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); if (scrypt) nv2_scrypt_core_kernelA_LG<A_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP);
if (IS_SCRYPT_JANE()) nv2_scrypt_core_kernelA_LG<A_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); if (chacha) nv2_scrypt_core_kernelA_LG<A_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP);
} }
pos += batch; pos += batch;
} while (pos < N); } while (pos < N);
@ -91,11 +93,11 @@ bool NV2Kernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr
do do
{ {
if (LOOKUP_GAP == 1) { if (LOOKUP_GAP == 1) {
if (IS_SCRYPT()) nv2_scrypt_core_kernelB<A_SCRYPT > <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); if (scrypt) nv2_scrypt_core_kernelB<A_SCRYPT > <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
if (IS_SCRYPT_JANE()) nv2_scrypt_core_kernelB<A_SCRYPT_JANE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); if (chacha) nv2_scrypt_core_kernelB<A_SCRYPT_JANE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
} else { } else {
if (IS_SCRYPT()) nv2_scrypt_core_kernelB_LG<A_SCRYPT > <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); if (scrypt) nv2_scrypt_core_kernelB_LG<A_SCRYPT > <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
if (IS_SCRYPT_JANE()) nv2_scrypt_core_kernelB_LG<A_SCRYPT_JANE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); if (chacha) nv2_scrypt_core_kernelB_LG<A_SCRYPT_JANE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
} }
pos += batch; pos += batch;

28
scrypt/salsa_kernel.cu

@ -819,8 +819,9 @@ void cuda_scrypt_DtoH(int thr_id, uint32_t *X, int stream, bool postSHA)
bool cuda_scrypt_sync(int thr_id, int stream) bool cuda_scrypt_sync(int thr_id, int stream)
{ {
cudaError_t err; cudaError_t err;
uint32_t wait_us = 0;
if(device_interactive[thr_id] && !opt_benchmark) if (device_interactive[thr_id] && !opt_benchmark)
{ {
// For devices that also do desktop rendering or compositing, we want to free up some time slots. // For devices that also do desktop rendering or compositing, we want to free up some time slots.
// That requires making a pause in work submission when there is no active task on the GPU, // That requires making a pause in work submission when there is no active task on the GPU,
@ -830,27 +831,30 @@ bool cuda_scrypt_sync(int thr_id, int stream)
//err = cudaDeviceSynchronize(); //err = cudaDeviceSynchronize();
while((err = cudaStreamQuery(context_streams[0][thr_id])) == cudaErrorNotReady || while((err = cudaStreamQuery(context_streams[0][thr_id])) == cudaErrorNotReady ||
(err == cudaSuccess && (err = cudaStreamQuery(context_streams[1][thr_id])) == cudaErrorNotReady)) (err == cudaSuccess && (err = cudaStreamQuery(context_streams[1][thr_id])) == cudaErrorNotReady)) {
usleep(1000); usleep(50); wait_us+=50;
}
usleep(1000); usleep(50); wait_us+=50;
} } else {
else
{
// this call was replaced by the loop below to workaround the high CPU usage issue // this call was replaced by the loop below to workaround the high CPU usage issue
//err = cudaStreamSynchronize(context_streams[stream][thr_id]); //err = cudaStreamSynchronize(context_streams[stream][thr_id]);
while((err = cudaStreamQuery(context_streams[stream][thr_id])) == cudaErrorNotReady) while((err = cudaStreamQuery(context_streams[stream][thr_id])) == cudaErrorNotReady) {
usleep(1000); usleep(50); wait_us+=50;
}
} }
if(err != cudaSuccess) if (err != cudaSuccess) {
{
if (!abort_flag) if (!abort_flag)
applog(LOG_ERR, "GPU #%d: CUDA error `%s` while executing the kernel.", device_map[thr_id], cudaGetErrorString(err)); applog(LOG_ERR, "GPU #%d: CUDA error `%s` while waiting the kernel.", device_map[thr_id], cudaGetErrorString(err));
return false; return false;
} }
//if (opt_debug) {
// applog(LOG_DEBUG, "GPU #%d: %s %u us", device_map[thr_id], __FUNCTION__, wait_us);
//}
return true; return true;
} }

18
scrypt/titan_kernel.cu

@ -676,6 +676,8 @@ bool TitanKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int t
uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache) uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache)
{ {
bool success = true; bool success = true;
bool scrypt = IS_SCRYPT();
bool chacha = IS_SCRYPT_JANE();
// make some constants available to kernel, update only initially and when changing // make some constants available to kernel, update only initially and when changing
static uint32_t prev_N[MAX_GPUS] = { 0 }; static uint32_t prev_N[MAX_GPUS] = { 0 };
@ -703,11 +705,11 @@ bool TitanKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int t
unsigned int pos = 0; unsigned int pos = 0;
do { do {
if (LOOKUP_GAP == 1) { if (LOOKUP_GAP == 1) {
if (IS_SCRYPT()) titan_scrypt_core_kernelA<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); if (scrypt) titan_scrypt_core_kernelA<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N));
if (IS_SCRYPT_JANE()) titan_scrypt_core_kernelA<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N)); if (chacha) titan_scrypt_core_kernelA<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N));
} else { } else {
if (IS_SCRYPT()) titan_scrypt_core_kernelA_LG<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); if (scrypt) titan_scrypt_core_kernelA_LG<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP);
if (IS_SCRYPT_JANE()) titan_scrypt_core_kernelA_LG<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP); if (chacha) titan_scrypt_core_kernelA_LG<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP);
} }
pos += batch; pos += batch;
@ -718,11 +720,11 @@ bool TitanKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int t
pos = 0; pos = 0;
do { do {
if (LOOKUP_GAP == 1) { if (LOOKUP_GAP == 1) {
if (IS_SCRYPT()) titan_scrypt_core_kernelB<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); if (scrypt) titan_scrypt_core_kernelB<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
if (IS_SCRYPT_JANE()) titan_scrypt_core_kernelB<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N)); if (chacha) titan_scrypt_core_kernelB<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
} else { } else {
if (IS_SCRYPT()) titan_scrypt_core_kernelB_LG<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); if (scrypt) titan_scrypt_core_kernelB_LG<A_SCRYPT, ANDERSEN> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
if (IS_SCRYPT_JANE()) titan_scrypt_core_kernelB_LG<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP); if (chacha) titan_scrypt_core_kernelB_LG<A_SCRYPT_JANE, SIMPLE> <<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
} }
pos += batch; pos += batch;

Loading…
Cancel
Save