mirror of https://github.com/GOSTSec/ccminer
Tanguy Pruvot
6 years ago
15 changed files with 1221 additions and 5 deletions
@ -0,0 +1,481 @@
@@ -0,0 +1,481 @@
|
||||
/** |
||||
* Lyra2 (v3) CUDA Implementation |
||||
* |
||||
* Based on VTC sources |
||||
*/ |
||||
#include <stdio.h> |
||||
#include <stdint.h> |
||||
#include <memory.h> |
||||
#include "cuda_helper.h" |
||||
|
||||
#include "cuda_lyra2v3_sm3.cuh" |
||||
|
||||
|
||||
|
||||
#ifdef __INTELLISENSE__ |
||||
/* just for vstudio code colors */ |
||||
#define __CUDA_ARCH__ 500 |
||||
#endif |
||||
|
||||
#define TPB 32 |
||||
|
||||
#if __CUDA_ARCH__ >= 500 |
||||
|
||||
#include "cuda_lyra2_vectors.h" |
||||
|
||||
#define Nrow 4 |
||||
#define Ncol 4 |
||||
#define memshift 3 |
||||
|
||||
|
||||
__device__ uint2x4 *DMatrix; |
||||
|
||||
__device__ __forceinline__ uint2 LD4S(const int index) |
||||
{ |
||||
extern __shared__ uint2 shared_mem[]; |
||||
return shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x]; |
||||
} |
||||
|
||||
__device__ __forceinline__ void ST4S(const int index, const uint2 data) |
||||
{ |
||||
extern __shared__ uint2 shared_mem[]; |
||||
shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data; |
||||
} |
||||
|
||||
__device__ __forceinline__ uint2 shuffle2(uint2 a, uint32_t b, uint32_t c) |
||||
{ |
||||
return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c)); |
||||
} |
||||
|
||||
__device__ __forceinline__ |
||||
void Gfunc_v5(uint2 &a, uint2 &b, uint2 &c, uint2 &d) |
||||
{ |
||||
a += b; d ^= a; d = SWAPUINT2(d); |
||||
c += d; b ^= c; b = ROR2(b, 24); |
||||
a += b; d ^= a; d = ROR2(d, 16); |
||||
c += d; b ^= c; b = ROR2(b, 63); |
||||
} |
||||
|
||||
__device__ __forceinline__ |
||||
void round_lyra_v5(uint2x4 s[4]) |
||||
{ |
||||
Gfunc_v5(s[0].x, s[1].x, s[2].x, s[3].x); |
||||
Gfunc_v5(s[0].y, s[1].y, s[2].y, s[3].y); |
||||
Gfunc_v5(s[0].z, s[1].z, s[2].z, s[3].z); |
||||
Gfunc_v5(s[0].w, s[1].w, s[2].w, s[3].w); |
||||
|
||||
Gfunc_v5(s[0].x, s[1].y, s[2].z, s[3].w); |
||||
Gfunc_v5(s[0].y, s[1].z, s[2].w, s[3].x); |
||||
Gfunc_v5(s[0].z, s[1].w, s[2].x, s[3].y); |
||||
Gfunc_v5(s[0].w, s[1].x, s[2].y, s[3].z); |
||||
} |
||||
|
||||
__device__ __forceinline__ |
||||
void round_lyra_v5(uint2 s[4]) |
||||
{ |
||||
Gfunc_v5(s[0], s[1], s[2], s[3]); |
||||
s[1] = shuffle2(s[1], threadIdx.x + 1, 4); |
||||
s[2] = shuffle2(s[2], threadIdx.x + 2, 4); |
||||
s[3] = shuffle2(s[3], threadIdx.x + 3, 4); |
||||
Gfunc_v5(s[0], s[1], s[2], s[3]); |
||||
s[1] = shuffle2(s[1], threadIdx.x + 3, 4); |
||||
s[2] = shuffle2(s[2], threadIdx.x + 2, 4); |
||||
s[3] = shuffle2(s[3], threadIdx.x + 1, 4); |
||||
} |
||||
|
||||
__device__ __forceinline__ |
||||
void reduceDuplexRowSetup2(uint2 state[4]) |
||||
{ |
||||
uint2 state1[Ncol][3], state0[Ncol][3], state2[3]; |
||||
int i, j; |
||||
|
||||
#pragma unroll |
||||
for (int i = 0; i < Ncol; i++) |
||||
{ |
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state0[Ncol - i - 1][j] = state[j]; |
||||
round_lyra_v5(state); |
||||
} |
||||
|
||||
//#pragma unroll 4 |
||||
for (i = 0; i < Ncol; i++) |
||||
{ |
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state[j] ^= state0[i][j]; |
||||
|
||||
round_lyra_v5(state); |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state1[Ncol - i - 1][j] = state0[i][j]; |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state1[Ncol - i - 1][j] ^= state[j]; |
||||
} |
||||
|
||||
for (i = 0; i < Ncol; i++) |
||||
{ |
||||
const uint32_t s0 = memshift * Ncol * 0 + i * memshift; |
||||
const uint32_t s2 = memshift * Ncol * 2 + memshift * (Ncol - 1) - i*memshift; |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state[j] ^= state1[i][j] + state0[i][j]; |
||||
|
||||
round_lyra_v5(state); |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state2[j] = state1[i][j]; |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state2[j] ^= state[j]; |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
ST4S(s2 + j, state2[j]); |
||||
|
||||
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); |
||||
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); |
||||
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) { |
||||
state0[i][0] ^= Data2; |
||||
state0[i][1] ^= Data0; |
||||
state0[i][2] ^= Data1; |
||||
} else { |
||||
state0[i][0] ^= Data0; |
||||
state0[i][1] ^= Data1; |
||||
state0[i][2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
ST4S(s0 + j, state0[i][j]); |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state0[i][j] = state2[j]; |
||||
|
||||
} |
||||
|
||||
for (i = 0; i < Ncol; i++) |
||||
{ |
||||
const uint32_t s1 = memshift * Ncol * 1 + i*memshift; |
||||
const uint32_t s3 = memshift * Ncol * 3 + memshift * (Ncol - 1) - i*memshift; |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state[j] ^= state1[i][j] + state0[Ncol - i - 1][j]; |
||||
|
||||
round_lyra_v5(state); |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state0[Ncol - i - 1][j] ^= state[j]; |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
ST4S(s3 + j, state0[Ncol - i - 1][j]); |
||||
|
||||
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); |
||||
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); |
||||
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) { |
||||
state1[i][0] ^= Data2; |
||||
state1[i][1] ^= Data0; |
||||
state1[i][2] ^= Data1; |
||||
} else { |
||||
state1[i][0] ^= Data0; |
||||
state1[i][1] ^= Data1; |
||||
state1[i][2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
ST4S(s1 + j, state1[i][j]); |
||||
} |
||||
} |
||||
|
||||
__device__ |
||||
void reduceDuplexRowt2(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4]) |
||||
{ |
||||
uint2 state1[3], state2[3]; |
||||
const uint32_t ps1 = memshift * Ncol * rowIn; |
||||
const uint32_t ps2 = memshift * Ncol * rowInOut; |
||||
const uint32_t ps3 = memshift * Ncol * rowOut; |
||||
|
||||
for (int i = 0; i < Ncol; i++) |
||||
{ |
||||
const uint32_t s1 = ps1 + i*memshift; |
||||
const uint32_t s2 = ps2 + i*memshift; |
||||
const uint32_t s3 = ps3 + i*memshift; |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = LD4S(s1 + j); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = LD4S(s2 + j); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j] + state2[j]; |
||||
|
||||
round_lyra_v5(state); |
||||
|
||||
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); |
||||
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); |
||||
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) { |
||||
state2[0] ^= Data2; |
||||
state2[1] ^= Data0; |
||||
state2[2] ^= Data1; |
||||
} else { |
||||
state2[0] ^= Data0; |
||||
state2[1] ^= Data1; |
||||
state2[2] ^= Data2; |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
ST4S(s2 + j, state2[j]); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
ST4S(s3 + j, LD4S(s3 + j) ^ state[j]); |
||||
} |
||||
} |
||||
|
||||
__device__ |
||||
void reduceDuplexRowt2x4(const int rowInOut, uint2 state[4]) |
||||
{ |
||||
const int rowIn = 2; |
||||
const int rowOut = 3; |
||||
|
||||
int i, j; |
||||
uint2 last[3]; |
||||
const uint32_t ps1 = memshift * Ncol * rowIn; |
||||
const uint32_t ps2 = memshift * Ncol * rowInOut; |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
last[j] = LD4S(ps2 + j); |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= LD4S(ps1 + j) + last[j]; |
||||
|
||||
round_lyra_v5(state); |
||||
|
||||
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4); |
||||
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4); |
||||
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4); |
||||
|
||||
if (threadIdx.x == 0) { |
||||
last[0] ^= Data2; |
||||
last[1] ^= Data0; |
||||
last[2] ^= Data1; |
||||
} else { |
||||
last[0] ^= Data0; |
||||
last[1] ^= Data1; |
||||
last[2] ^= Data2; |
||||
} |
||||
|
||||
if (rowInOut == rowOut) |
||||
{ |
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
last[j] ^= state[j]; |
||||
} |
||||
|
||||
for (i = 1; i < Ncol; i++) |
||||
{ |
||||
const uint32_t s1 = ps1 + i*memshift; |
||||
const uint32_t s2 = ps2 + i*memshift; |
||||
|
||||
#pragma unroll |
||||
for (j = 0; j < 3; j++) |
||||
state[j] ^= LD4S(s1 + j) + LD4S(s2 + j); |
||||
|
||||
round_lyra_v5(state); |
||||
} |
||||
|
||||
#pragma unroll |
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= last[j]; |
||||
} |
||||
|
||||
__global__ |
||||
__launch_bounds__(TPB, 1) |
||||
void lyra2v3_gpu_hash_32_1(uint32_t threads, uint2 *inputHash) |
||||
{ |
||||
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; |
||||
|
||||
const uint2x4 blake2b_IV[2] = { |
||||
0xf3bcc908UL, 0x6a09e667UL, 0x84caa73bUL, 0xbb67ae85UL, |
||||
0xfe94f82bUL, 0x3c6ef372UL, 0x5f1d36f1UL, 0xa54ff53aUL, |
||||
0xade682d1UL, 0x510e527fUL, 0x2b3e6c1fUL, 0x9b05688cUL, |
||||
0xfb41bd6bUL, 0x1f83d9abUL, 0x137e2179UL, 0x5be0cd19UL |
||||
}; |
||||
|
||||
const uint2x4 Mask[2] = { |
||||
0x00000020UL, 0x00000000UL, 0x00000020UL, 0x00000000UL, |
||||
0x00000020UL, 0x00000000UL, 0x00000001UL, 0x00000000UL, |
||||
0x00000004UL, 0x00000000UL, 0x00000004UL, 0x00000000UL, |
||||
0x00000080UL, 0x00000000UL, 0x00000000UL, 0x01000000UL |
||||
}; |
||||
|
||||
uint2x4 state[4]; |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
state[0].x = state[1].x = __ldg(&inputHash[thread + threads * 0]); |
||||
state[0].y = state[1].y = __ldg(&inputHash[thread + threads * 1]); |
||||
state[0].z = state[1].z = __ldg(&inputHash[thread + threads * 2]); |
||||
state[0].w = state[1].w = __ldg(&inputHash[thread + threads * 3]); |
||||
state[2] = blake2b_IV[0]; |
||||
state[3] = blake2b_IV[1]; |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v5(state); |
||||
|
||||
state[0] ^= Mask[0]; |
||||
state[1] ^= Mask[1]; |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v5(state); |
||||
|
||||
DMatrix[blockDim.x * gridDim.x * 0 + thread] = state[0]; |
||||
DMatrix[blockDim.x * gridDim.x * 1 + thread] = state[1]; |
||||
DMatrix[blockDim.x * gridDim.x * 2 + thread] = state[2]; |
||||
DMatrix[blockDim.x * gridDim.x * 3 + thread] = state[3]; |
||||
} |
||||
} |
||||
|
||||
__global__ |
||||
__launch_bounds__(TPB, 1) |
||||
void lyra2v3_gpu_hash_32_2(uint32_t threads) |
||||
{ |
||||
const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y; |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
uint2 state[4]; |
||||
state[0] = ((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
||||
state[1] = ((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
||||
state[2] = ((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
||||
state[3] = ((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x]; |
||||
|
||||
reduceDuplexRowSetup2(state); |
||||
|
||||
uint32_t rowa; |
||||
int prev = 3; |
||||
unsigned int instance = 0; |
||||
for (int i = 0; i < 3; i++) |
||||
{ |
||||
instance = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4); |
||||
rowa = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4) & 0x3; |
||||
|
||||
//rowa = __shfl(state[0].x, 0, 4) & 3; |
||||
reduceDuplexRowt2(prev, rowa, i, state); |
||||
prev = i; |
||||
} |
||||
|
||||
instance = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4); |
||||
rowa = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4) & 0x3; |
||||
|
||||
//rowa = __shfl(state[0].x, 0, 4) & 3; |
||||
reduceDuplexRowt2x4(rowa, state); |
||||
|
||||
((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[0]; |
||||
((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[1]; |
||||
((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[2]; |
||||
((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[3]; |
||||
} |
||||
} |
||||
|
||||
__global__ |
||||
__launch_bounds__(TPB, 1) |
||||
void lyra2v3_gpu_hash_32_3(uint32_t threads, uint2 *outputHash) |
||||
{ |
||||
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x; |
||||
|
||||
uint2x4 state[4]; |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
state[0] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 0 + thread]); |
||||
state[1] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 1 + thread]); |
||||
state[2] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 2 + thread]); |
||||
state[3] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 3 + thread]); |
||||
|
||||
for (int i = 0; i < 12; i++) |
||||
round_lyra_v5(state); |
||||
|
||||
outputHash[thread + threads * 0] = state[0].x; |
||||
outputHash[thread + threads * 1] = state[0].y; |
||||
outputHash[thread + threads * 2] = state[0].z; |
||||
outputHash[thread + threads * 3] = state[0].w; |
||||
} |
||||
} |
||||
|
||||
#else |
||||
#include "cuda_helper.h" |
||||
#if __CUDA_ARCH__ < 200 |
||||
__device__ void* DMatrix; |
||||
#endif |
||||
__global__ void lyra2v3_gpu_hash_32_1(uint32_t threads, uint2 *inputHash) {} |
||||
__global__ void lyra2v3_gpu_hash_32_2(uint32_t threads) {} |
||||
__global__ void lyra2v3_gpu_hash_32_3(uint32_t threads, uint2 *outputHash) {} |
||||
#endif |
||||
|
||||
|
||||
__host__ |
||||
void lyra2v3_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix) |
||||
{ |
||||
cuda_get_arch(thr_id); |
||||
// just assign the device pointer allocated in main loop |
||||
cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
__host__ |
||||
void lyra2v3_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, int order) |
||||
{ |
||||
int dev_id = device_map[thr_id % MAX_GPUS]; |
||||
|
||||
if (device_sm[dev_id] >= 500) { |
||||
|
||||
const uint32_t tpb = TPB; |
||||
|
||||
dim3 grid2((threads + tpb - 1) / tpb); |
||||
dim3 block2(tpb); |
||||
dim3 grid4((threads * 4 + tpb - 1) / tpb); |
||||
dim3 block4(4, tpb / 4); |
||||
|
||||
lyra2v3_gpu_hash_32_1 <<< grid2, block2 >>> (threads, (uint2*)g_hash); |
||||
lyra2v3_gpu_hash_32_2 <<< grid4, block4, 48 * sizeof(uint2) * tpb >>> (threads); |
||||
lyra2v3_gpu_hash_32_3 <<< grid2, block2 >>> (threads, (uint2*)g_hash); |
||||
|
||||
} else { |
||||
|
||||
uint32_t tpb = 16; |
||||
if (cuda_arch[dev_id] >= 350) tpb = TPB35; |
||||
else if (cuda_arch[dev_id] >= 300) tpb = TPB30; |
||||
else if (cuda_arch[dev_id] >= 200) tpb = TPB20; |
||||
|
||||
dim3 grid((threads + tpb - 1) / tpb); |
||||
dim3 block(tpb); |
||||
lyra2v3_gpu_hash_32_v3 <<< grid, block >>> (threads, startNounce, (uint2*)g_hash); |
||||
|
||||
} |
||||
} |
||||
|
||||
|
@ -0,0 +1,348 @@
@@ -0,0 +1,348 @@
|
||||
/* SM 2/3/3.5 Variant for lyra2REv2 */ |
||||
|
||||
#ifdef __INTELLISENSE__ |
||||
/* just for vstudio code colors, only uncomment that temporary, dont commit it */ |
||||
//#undef __CUDA_ARCH__ |
||||
//#define __CUDA_ARCH__ 500 |
||||
#endif |
||||
|
||||
#define TPB20 64 |
||||
#define TPB30 64 |
||||
#define TPB35 64 |
||||
|
||||
#if __CUDA_ARCH__ >= 200 && __CUDA_ARCH__ < 500 |
||||
|
||||
#include "cuda_lyra2_vectors.h" |
||||
|
||||
#define Nrow 4 |
||||
#define Ncol 4 |
||||
|
||||
#define vectype ulonglong4 |
||||
#define memshift 4 |
||||
|
||||
__device__ vectype *DMatrix; |
||||
|
||||
static __device__ __forceinline__ |
||||
void Gfunc_v35(unsigned long long &a, unsigned long long &b, unsigned long long &c, unsigned long long &d) |
||||
{ |
||||
a += b; d ^= a; d = ROTR64(d, 32); |
||||
c += d; b ^= c; b = ROTR64(b, 24); |
||||
a += b; d ^= a; d = ROTR64(d, 16); |
||||
c += d; b ^= c; b = ROTR64(b, 63); |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void round_lyra_v35(vectype* s) |
||||
{ |
||||
Gfunc_v35(s[0].x, s[1].x, s[2].x, s[3].x); |
||||
Gfunc_v35(s[0].y, s[1].y, s[2].y, s[3].y); |
||||
Gfunc_v35(s[0].z, s[1].z, s[2].z, s[3].z); |
||||
Gfunc_v35(s[0].w, s[1].w, s[2].w, s[3].w); |
||||
|
||||
Gfunc_v35(s[0].x, s[1].y, s[2].z, s[3].w); |
||||
Gfunc_v35(s[0].y, s[1].z, s[2].w, s[3].x); |
||||
Gfunc_v35(s[0].z, s[1].w, s[2].x, s[3].y); |
||||
Gfunc_v35(s[0].w, s[1].x, s[2].y, s[3].z); |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexV3(vectype state[4], uint32_t thread) |
||||
{ |
||||
vectype state1[3]; |
||||
uint32_t ps1 = (Nrow * Ncol * memshift * thread); |
||||
uint32_t ps2 = (memshift * (Ncol - 1) * Nrow + memshift * 1 + Nrow * Ncol * memshift * thread); |
||||
|
||||
#pragma unroll 4 |
||||
for (int i = 0; i < Ncol; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + Nrow * i *memshift; |
||||
uint32_t s2 = ps2 - Nrow * i *memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1)[j]); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j]; |
||||
round_lyra_v35(state); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] ^= state[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state1[j]; |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowSetupV3(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread) |
||||
{ |
||||
vectype state2[3], state1[3]; |
||||
|
||||
uint32_t ps1 = (memshift * rowIn + Nrow * Ncol * memshift * thread); |
||||
uint32_t ps2 = (memshift * rowInOut + Nrow * Ncol * memshift * thread); |
||||
uint32_t ps3 = (Nrow * memshift * (Ncol - 1) + memshift * rowOut + Nrow * Ncol * memshift * thread); |
||||
|
||||
for (int i = 0; i < Ncol; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + Nrow*i*memshift; |
||||
uint32_t s2 = ps2 + Nrow*i*memshift; |
||||
uint32_t s3 = ps3 - Nrow*i*memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1 )[j]); |
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = __ldg4(&(DMatrix + s2 )[j]); |
||||
for (int j = 0; j < 3; j++) { |
||||
vectype tmp = state1[j] + state2[j]; |
||||
state[j] ^= tmp; |
||||
} |
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
for (int j = 0; j < 3; j++) { |
||||
state1[j] ^= state[j]; |
||||
(DMatrix + s3)[j] = state1[j]; |
||||
} |
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
||||
for (int j = 0; j < 11; j++) |
||||
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
} |
||||
} |
||||
|
||||
static __device__ __forceinline__ |
||||
void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread) |
||||
{ |
||||
vectype state1[3], state2[3]; |
||||
uint32_t ps1 = (memshift * rowIn + Nrow * Ncol * memshift * thread); |
||||
uint32_t ps2 = (memshift * rowInOut + Nrow * Ncol * memshift * thread); |
||||
uint32_t ps3 = (memshift * rowOut + Nrow * Ncol * memshift * thread); |
||||
|
||||
#pragma nounroll |
||||
for (int i = 0; i < Ncol; i++) |
||||
{ |
||||
uint32_t s1 = ps1 + Nrow * i*memshift; |
||||
uint32_t s2 = ps2 + Nrow * i*memshift; |
||||
uint32_t s3 = ps3 + Nrow * i*memshift; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] = __ldg4(&(DMatrix + s1)[j]); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] = __ldg4(&(DMatrix + s2)[j]); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state1[j] += state2[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= state1[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11]; |
||||
|
||||
for (int j = 0; j < 11; j++) |
||||
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; |
||||
|
||||
if (rowInOut != rowOut) { |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s3)[j] ^= state[j]; |
||||
|
||||
} else { |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state2[j] ^= state[j]; |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s2)[j] = state2[j]; |
||||
} |
||||
} |
||||
} |
||||
|
||||
#if __CUDA_ARCH__ >= 300 |
||||
__global__ __launch_bounds__(TPB35, 1) |
||||
void lyra2v3_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
|
||||
vectype state[4]; |
||||
vectype blake2b_IV[2]; |
||||
vectype padding[2]; |
||||
|
||||
if (threadIdx.x == 0) { |
||||
|
||||
((uint16*)blake2b_IV)[0] = make_uint16( |
||||
0xf3bcc908, 0x6a09e667 , 0x84caa73b, 0xbb67ae85, |
||||
0xfe94f82b, 0x3c6ef372 , 0x5f1d36f1, 0xa54ff53a, |
||||
0xade682d1, 0x510e527f , 0x2b3e6c1f, 0x9b05688c, |
||||
0xfb41bd6b, 0x1f83d9ab , 0x137e2179, 0x5be0cd19 |
||||
); |
||||
((uint16*)padding)[0] = make_uint16( |
||||
0x20, 0x0 , 0x20, 0x0 , 0x20, 0x0 , 0x01, 0x0, |
||||
0x04, 0x0 , 0x04, 0x0 , 0x80, 0x0 , 0x0, 0x01000000 |
||||
); |
||||
} |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
((uint2*)state)[0] = __ldg(&outputHash[thread]); |
||||
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]); |
||||
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]); |
||||
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]); |
||||
|
||||
state[1] = state[0]; |
||||
state[2] = shuffle4(((vectype*)blake2b_IV)[0], 0); |
||||
state[3] = shuffle4(((vectype*)blake2b_IV)[1], 0); |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
state[0] ^= shuffle4(((vectype*)padding)[0], 0); |
||||
state[1] ^= shuffle4(((vectype*)padding)[1], 0); |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
uint32_t ps1 = (4 * memshift * 3 + 16 * memshift * thread); |
||||
|
||||
//#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
uint32_t s1 = ps1 - 4 * memshift * i; |
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s1)[j] = (state)[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
} |
||||
|
||||
reduceDuplexV3(state, thread); |
||||
reduceDuplexRowSetupV3(1, 0, 2, state, thread); |
||||
reduceDuplexRowSetupV3(2, 1, 3, state, thread); |
||||
|
||||
unsigned int instance = 0; |
||||
uint32_t rowa; |
||||
int prev = 3; |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
//rowa = ((uint2*)state)[0].x & 3; |
||||
|
||||
instance = ((uint2*)state)[instance & 0xf].x; |
||||
rowa = ((uint2*)state)[instance & 0xf].x & 0x3; |
||||
reduceDuplexRowtV3(prev, rowa, i, state, thread); |
||||
prev = i; |
||||
} |
||||
|
||||
uint32_t shift = (memshift * rowa + 16 * memshift * thread); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= __ldg4(&(DMatrix + shift)[j]); |
||||
|
||||
for (int i = 0; i < 12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
outputHash[thread] = ((uint2*)state)[0]; |
||||
outputHash[thread + threads] = ((uint2*)state)[1]; |
||||
outputHash[thread + 2 * threads] = ((uint2*)state)[2]; |
||||
outputHash[thread + 3 * threads] = ((uint2*)state)[3]; |
||||
|
||||
} //thread |
||||
} |
||||
#elif __CUDA_ARCH__ >= 200 |
||||
__global__ __launch_bounds__(TPB20, 1) |
||||
void lyra2v3_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) |
||||
{ |
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
|
||||
vectype state[4]; |
||||
vectype blake2b_IV[2]; |
||||
vectype padding[2]; |
||||
|
||||
((uint16*)blake2b_IV)[0] = make_uint16( |
||||
0xf3bcc908, 0x6a09e667, 0x84caa73b, 0xbb67ae85, |
||||
0xfe94f82b, 0x3c6ef372, 0x5f1d36f1, 0xa54ff53a, |
||||
0xade682d1, 0x510e527f, 0x2b3e6c1f, 0x9b05688c, |
||||
0xfb41bd6b, 0x1f83d9ab, 0x137e2179, 0x5be0cd19 |
||||
); |
||||
((uint16*)padding)[0] = make_uint16( |
||||
0x20, 0x0, 0x20, 0x0, 0x20, 0x0, 0x01, 0x0, |
||||
0x04, 0x0, 0x04, 0x0, 0x80, 0x0, 0x0, 0x01000000 |
||||
); |
||||
|
||||
if (thread < threads) |
||||
{ |
||||
|
||||
((uint2*)state)[0] = outputHash[thread]; |
||||
((uint2*)state)[1] = outputHash[thread + threads]; |
||||
((uint2*)state)[2] = outputHash[thread + 2 * threads]; |
||||
((uint2*)state)[3] = outputHash[thread + 3 * threads]; |
||||
|
||||
state[1] = state[0]; |
||||
state[2] = ((vectype*)blake2b_IV)[0]; |
||||
state[3] = ((vectype*)blake2b_IV)[1]; |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
state[0] ^= ((vectype*)padding)[0]; |
||||
state[1] ^= ((vectype*)padding)[1]; |
||||
|
||||
for (int i = 0; i<12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
uint32_t ps1 = (4 * memshift * 3 + 16 * memshift * thread); |
||||
|
||||
//#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
uint32_t s1 = ps1 - 4 * memshift * i; |
||||
for (int j = 0; j < 3; j++) |
||||
(DMatrix + s1)[j] = (state)[j]; |
||||
|
||||
round_lyra_v35(state); |
||||
} |
||||
|
||||
reduceDuplexV3(state, thread); |
||||
reduceDuplexRowSetupV3(1, 0, 2, state, thread); |
||||
reduceDuplexRowSetupV3(2, 1, 3, state, thread); |
||||
|
||||
uint instance = 0; |
||||
uint32_t rowa; |
||||
int prev = 3; |
||||
for (int i = 0; i < 4; i++) |
||||
{ |
||||
// rowa = ((uint2*)state)[0].x & 3; |
||||
|
||||
instance = ((uint2*)state)[instance & 0xf]; |
||||
rowa = ((uint2*)state)[instance & 0xf] & 0x3; |
||||
reduceDuplexRowtV3(prev, rowa, i, state, thread); |
||||
prev = i; |
||||
} |
||||
|
||||
uint32_t shift = (memshift * rowa + 16 * memshift * thread); |
||||
|
||||
for (int j = 0; j < 3; j++) |
||||
state[j] ^= __ldg4(&(DMatrix + shift)[j]); |
||||
|
||||
for (int i = 0; i < 12; i++) |
||||
round_lyra_v35(state); |
||||
|
||||
outputHash[thread] = ((uint2*)state)[0]; |
||||
outputHash[thread + threads] = ((uint2*)state)[1]; |
||||
outputHash[thread + 2 * threads] = ((uint2*)state)[2]; |
||||
outputHash[thread + 3 * threads] = ((uint2*)state)[3]; |
||||
|
||||
} //thread |
||||
} |
||||
#endif |
||||
|
||||
#else |
||||
/* host & sm5+ */ |
||||
__global__ void lyra2v3_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) {} |
||||
#endif |
@ -0,0 +1,182 @@
@@ -0,0 +1,182 @@
|
||||
extern "C" { |
||||
#include "sph/sph_blake.h" |
||||
#include "sph/sph_bmw.h" |
||||
#include "sph/sph_cubehash.h" |
||||
#include "lyra2/Lyra2.h" |
||||
} |
||||
|
||||
#include <miner.h> |
||||
#include <cuda_helper.h> |
||||
|
||||
static uint64_t *d_hash[MAX_GPUS]; |
||||
static uint64_t* d_matrix[MAX_GPUS]; |
||||
|
||||
extern void blake256_cpu_init(int thr_id, uint32_t threads); |
||||
extern void blake256_cpu_setBlock_80(uint32_t *pdata); |
||||
extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order); |
||||
|
||||
extern void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order); |
||||
|
||||
extern void lyra2v3_setTarget(const void *pTargetIn); |
||||
extern void lyra2v3_cpu_init(int thr_id, uint32_t threads, uint64_t* d_matrix); |
||||
extern void lyra2v3_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); |
||||
|
||||
extern void lyra2v3_cpu_hash_32_targ(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces); |
||||
|
||||
extern void bmw256_setTarget(const void *ptarget); |
||||
extern void bmw256_cpu_init(int thr_id, uint32_t threads); |
||||
extern void bmw256_cpu_free(int thr_id); |
||||
extern void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces); |
||||
|
||||
extern "C" void lyra2v3_hash(void *state, const void *input) |
||||
{ |
||||
uint32_t hashA[8], hashB[8]; |
||||
|
||||
sph_blake256_context ctx_blake; |
||||
sph_cubehash256_context ctx_cube; |
||||
sph_bmw256_context ctx_bmw; |
||||
|
||||
sph_blake256_set_rounds(14); |
||||
|
||||
sph_blake256_init(&ctx_blake); |
||||
sph_blake256(&ctx_blake, input, 80); |
||||
sph_blake256_close(&ctx_blake, hashA); |
||||
|
||||
LYRA2_3(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4); |
||||
|
||||
sph_cubehash256_init(&ctx_cube); |
||||
sph_cubehash256(&ctx_cube, hashB, 32); |
||||
sph_cubehash256_close(&ctx_cube, hashA); |
||||
|
||||
LYRA2_3(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4); |
||||
|
||||
sph_bmw256_init(&ctx_bmw); |
||||
sph_bmw256(&ctx_bmw, hashB, 32); |
||||
sph_bmw256_close(&ctx_bmw, hashA); |
||||
|
||||
memcpy(state, hashA, 32); |
||||
} |
||||
|
||||
static bool init[MAX_GPUS] = { 0 }; |
||||
|
||||
extern "C" int scanhash_lyra2v3(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) |
||||
{ |
||||
uint32_t *pdata = work->data; |
||||
uint32_t *ptarget = work->target; |
||||
const uint32_t first_nonce = pdata[19]; |
||||
int dev_id = device_map[thr_id]; |
||||
int intensity = (device_sm[dev_id] < 500) ? 18 : is_windows() ? 19 : 20; |
||||
if (strstr(device_name[dev_id], "GTX 10")) intensity = 20; |
||||
uint32_t throughput = cuda_default_throughput(dev_id, 1UL << intensity); |
||||
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); |
||||
|
||||
if (opt_benchmark) |
||||
ptarget[7] = 0x000f; |
||||
|
||||
|
||||
if (!init[thr_id]) |
||||
{ |
||||
size_t matrix_sz = 16 * sizeof(uint64_t) * 4 * 3; |
||||
cudaSetDevice(dev_id); |
||||
if (opt_cudaschedule == -1 && gpu_threads == 1) { |
||||
cudaDeviceReset(); |
||||
// reduce cpu usage |
||||
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); |
||||
CUDA_LOG_ERROR(); |
||||
} |
||||
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); |
||||
|
||||
blake256_cpu_init(thr_id, throughput); |
||||
bmw256_cpu_init(thr_id, throughput); |
||||
|
||||
cuda_get_arch(thr_id); // cuda_arch[] also used in cubehash256 |
||||
|
||||
// SM 3 implentation requires a bit more memory |
||||
if (device_sm[dev_id] < 500 || cuda_arch[dev_id] < 500) |
||||
matrix_sz = 16 * sizeof(uint64_t) * 4 * 4; |
||||
|
||||
CUDA_SAFE_CALL(cudaMalloc(&d_matrix[thr_id], matrix_sz * throughput)); |
||||
lyra2v3_cpu_init(thr_id, throughput, d_matrix[thr_id]); |
||||
|
||||
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput)); |
||||
|
||||
api_set_throughput(thr_id, throughput); |
||||
init[thr_id] = true; |
||||
} |
||||
|
||||
uint32_t endiandata[20]; |
||||
for (int k=0; k < 20; k++) |
||||
be32enc(&endiandata[k], pdata[k]); |
||||
|
||||
blake256_cpu_setBlock_80(pdata); |
||||
bmw256_setTarget(ptarget); |
||||
|
||||
do { |
||||
int order = 0; |
||||
|
||||
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); |
||||
lyra2v3_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); |
||||
cubehash256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); |
||||
lyra2v3_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); |
||||
memset(work->nonces, 0, sizeof(work->nonces)); |
||||
bmw256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], work->nonces); |
||||
|
||||
*hashes_done = pdata[19] - first_nonce + throughput; |
||||
|
||||
if (work->nonces[0] != 0) |
||||
{ |
||||
const uint32_t Htarg = ptarget[7]; |
||||
uint32_t _ALIGN(64) vhash[8]; |
||||
be32enc(&endiandata[19], work->nonces[0]); |
||||
lyra2v3_hash(vhash, endiandata); |
||||
|
||||
if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) { |
||||
work->valid_nonces = 1; |
||||
work_set_target_ratio(work, vhash); |
||||
if (work->nonces[1] != 0) { |
||||
be32enc(&endiandata[19], work->nonces[1]); |
||||
lyra2v3_hash(vhash, endiandata); |
||||
bn_set_target_ratio(work, vhash, 1); |
||||
work->valid_nonces++; |
||||
pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; |
||||
} else { |
||||
pdata[19] = work->nonces[0] + 1; // cursor |
||||
} |
||||
return work->valid_nonces; |
||||
} |
||||
else if (vhash[7] > Htarg) { |
||||
gpu_increment_reject(thr_id); |
||||
if (!opt_quiet) |
||||
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); |
||||
pdata[19] = work->nonces[0] + 1; |
||||
continue; |
||||
} |
||||
} |
||||
|
||||
if ((uint64_t)throughput + pdata[19] >= max_nonce) { |
||||
pdata[19] = max_nonce; |
||||
break; |
||||
} |
||||
pdata[19] += throughput; |
||||
|
||||
} while (!work_restart[thr_id].restart && !abort_flag); |
||||
|
||||
*hashes_done = pdata[19] - first_nonce; |
||||
return 0; |
||||
} |
||||
|
||||
// cleanup |
||||
extern "C" void free_lyra2v3(int thr_id) |
||||
{ |
||||
if (!init[thr_id]) |
||||
return; |
||||
|
||||
cudaThreadSynchronize(); |
||||
|
||||
cudaFree(d_hash[thr_id]); |
||||
cudaFree(d_matrix[thr_id]); |
||||
|
||||
init[thr_id] = false; |
||||
|
||||
cudaDeviceSynchronize(); |
||||
} |
Loading…
Reference in new issue