mirror of
https://github.com/GOSTSec/ccminer
synced 2025-01-18 18:50:11 +00:00
Handle lyra2v3 algo, for VTC fork
mostly imported from opensourced vertcoin-miner with a few fixes
This commit is contained in:
parent
c59bc2438a
commit
9a1f20d455
@ -38,6 +38,7 @@ ccminer_SOURCES = elist.h miner.h compat.h \
|
||||
lyra2/Lyra2.c lyra2/Sponge.c \
|
||||
lyra2/lyra2RE.cu lyra2/cuda_lyra2.cu \
|
||||
lyra2/lyra2REv2.cu lyra2/cuda_lyra2v2.cu \
|
||||
lyra2/lyra2REv3.cu lyra2/cuda_lyra2v3.cu \
|
||||
lyra2/Lyra2Z.c lyra2/lyra2Z.cu lyra2/cuda_lyra2Z.cu \
|
||||
lyra2/allium.cu \
|
||||
Algo256/cuda_bmw256.cu Algo256/cuda_cubehash256.cu \
|
||||
|
@ -1,5 +1,5 @@
|
||||
|
||||
ccminer 2.3 "phi2 and cryptonight variants"
|
||||
ccminer 2.3.1 "lyra2v3, exosis and sha256q"
|
||||
---------------------------------------------------------------
|
||||
|
||||
***************************************************************
|
||||
@ -100,7 +100,8 @@ its command line interface and options.
|
||||
lbry use to mine LBRY Credits
|
||||
luffa use to mine Joincoin
|
||||
lyra2 use to mine CryptoCoin
|
||||
lyra2v2 use to mine Vertcoin
|
||||
lyra2v2 use to mine Monacoin
|
||||
lyra2v3 use to mine Vertcoin
|
||||
lyra2z use to mine Zerocoin (XZC)
|
||||
monero use to mine Monero (XMR)
|
||||
myr-gr use to mine Myriad-Groest
|
||||
@ -117,7 +118,7 @@ its command line interface and options.
|
||||
scrypt-jane use to mine Chacha coins like Cache and Ultracoin
|
||||
s3 use to mine 1coin (ONE)
|
||||
sha256t use to mine OneCoin (OC)
|
||||
sha256q use to mine Pyrite
|
||||
sha256q use to mine Pyrite
|
||||
sia use to mine SIA
|
||||
sib use to mine Sibcoin
|
||||
skein use to mine Skeincoin
|
||||
|
4
algos.h
4
algos.h
@ -34,6 +34,7 @@ enum sha_algos {
|
||||
ALGO_LUFFA,
|
||||
ALGO_LYRA2,
|
||||
ALGO_LYRA2v2,
|
||||
ALGO_LYRA2v3,
|
||||
ALGO_LYRA2Z,
|
||||
ALGO_MJOLLNIR, /* Hefty hash */
|
||||
ALGO_MYR_GR,
|
||||
@ -115,6 +116,7 @@ static const char *algo_names[] = {
|
||||
"luffa",
|
||||
"lyra2",
|
||||
"lyra2v2",
|
||||
"lyra2v3",
|
||||
"lyra2z",
|
||||
"mjollnir",
|
||||
"myr-gr",
|
||||
@ -199,6 +201,8 @@ static inline int algo_to_int(char* arg)
|
||||
i = ALGO_LYRA2;
|
||||
else if (!strcasecmp("lyra2rev2", arg))
|
||||
i = ALGO_LYRA2v2;
|
||||
else if (!strcasecmp("lyra2rev3", arg))
|
||||
i = ALGO_LYRA2v3;
|
||||
else if (!strcasecmp("phi1612", arg))
|
||||
i = ALGO_PHI;
|
||||
else if (!strcasecmp("bitcoin", arg))
|
||||
|
@ -78,6 +78,7 @@ void algo_free_all(int thr_id)
|
||||
free_luffa(thr_id);
|
||||
free_lyra2(thr_id);
|
||||
free_lyra2v2(thr_id);
|
||||
free_lyra2v3(thr_id);
|
||||
free_lyra2Z(thr_id);
|
||||
free_myriad(thr_id);
|
||||
free_neoscrypt(thr_id);
|
||||
|
@ -269,7 +269,8 @@ Options:\n\
|
||||
lbry LBRY Credits (Sha/Ripemd)\n\
|
||||
luffa Joincoin\n\
|
||||
lyra2 CryptoCoin\n\
|
||||
lyra2v2 VertCoin\n\
|
||||
lyra2v2 MonaCoin\n\
|
||||
lyra2v3 Vertcoin\n\
|
||||
lyra2z ZeroCoin (3rd impl)\n\
|
||||
myr-gr Myriad-Groestl\n\
|
||||
monero XMR cryptonight (v7)\n\
|
||||
@ -1742,6 +1743,7 @@ static bool stratum_gen_work(struct stratum_ctx *sctx, struct work *work)
|
||||
case ALGO_KECCAKC:
|
||||
case ALGO_LBRY:
|
||||
case ALGO_LYRA2v2:
|
||||
case ALGO_LYRA2v3:
|
||||
case ALGO_LYRA2Z:
|
||||
case ALGO_PHI2:
|
||||
case ALGO_TIMETRAVEL:
|
||||
@ -2283,6 +2285,7 @@ static void *miner_thread(void *userdata)
|
||||
case ALGO_JHA:
|
||||
case ALGO_HSR:
|
||||
case ALGO_LYRA2v2:
|
||||
case ALGO_LYRA2v3:
|
||||
case ALGO_PHI:
|
||||
case ALGO_PHI2:
|
||||
case ALGO_POLYTIMOS:
|
||||
@ -2474,6 +2477,9 @@ static void *miner_thread(void *userdata)
|
||||
case ALGO_LYRA2v2:
|
||||
rc = scanhash_lyra2v2(thr_id, &work, max_nonce, &hashes_done);
|
||||
break;
|
||||
case ALGO_LYRA2v3:
|
||||
rc = scanhash_lyra2v3(thr_id, &work, max_nonce, &hashes_done);
|
||||
break;
|
||||
case ALGO_LYRA2Z:
|
||||
rc = scanhash_lyra2Z(thr_id, &work, max_nonce, &hashes_done);
|
||||
break;
|
||||
|
@ -530,6 +530,9 @@
|
||||
<ClInclude Include="lyra2\cuda_lyra2_sm2.cuh" />
|
||||
<ClInclude Include="lyra2\cuda_lyra2_sm5.cuh" />
|
||||
<ClInclude Include="lyra2\cuda_lyra2v2_sm3.cuh" />
|
||||
<CudaCompile Include="lyra2\lyra2REv3.cu" />
|
||||
<CudaCompile Include="lyra2\cuda_lyra2v3.cu" />
|
||||
<ClInclude Include="lyra2\cuda_lyra2v3_sm3.cuh" />
|
||||
<CudaCompile Include="lyra2\lyra2Z.cu" />
|
||||
<CudaCompile Include="lyra2\cuda_lyra2Z.cu" />
|
||||
<ClInclude Include="lyra2\cuda_lyra2Z_sm5.cuh" />
|
||||
|
@ -946,6 +946,15 @@
|
||||
<CudaCompile Include="lyra2\lyra2REv2.cu">
|
||||
<Filter>Source Files\CUDA\lyra2</Filter>
|
||||
</CudaCompile>
|
||||
<CudaCompile Include="lyra2\cuda_lyra2v3.cu">
|
||||
<Filter>Source Files\CUDA\lyra2</Filter>
|
||||
</CudaCompile>
|
||||
<ClInclude Include="lyra2\cuda_lyra2v3_sm3.cuh">
|
||||
<Filter>Source Files\CUDA\lyra2</Filter>
|
||||
</ClInclude>
|
||||
<CudaCompile Include="lyra2\lyra2REv3.cu">
|
||||
<Filter>Source Files\CUDA\lyra2</Filter>
|
||||
</CudaCompile>
|
||||
<CudaCompile Include="lyra2\cuda_lyra2Z.cu">
|
||||
<Filter>Source Files\CUDA\lyra2</Filter>
|
||||
</CudaCompile>
|
||||
|
@ -164,7 +164,7 @@
|
||||
#define PACKAGE_URL "http://github.com/tpruvot/ccminer"
|
||||
|
||||
/* Define to the version of this package. */
|
||||
#define PACKAGE_VERSION "2.3"
|
||||
#define PACKAGE_VERSION "2.3.1"
|
||||
|
||||
/* If using the C implementation of alloca, define if you know the
|
||||
direction of stack growth for your system; otherwise it will be
|
||||
|
173
lyra2/Lyra2.c
173
lyra2/Lyra2.c
@ -212,3 +212,176 @@ int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *sa
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int LYRA2_3(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols)
|
||||
{
|
||||
//============================= Basic variables ============================//
|
||||
int64_t row = 2; //index of row to be processed
|
||||
int64_t prev = 1; //index of prev (last row ever computed/modified)
|
||||
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
|
||||
int64_t tau; //Time Loop iterator
|
||||
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
|
||||
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
|
||||
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
|
||||
int64_t i; //auxiliary iteration counter
|
||||
int64_t v64; // 64bit var for memcpy
|
||||
uint64_t instance = 0;
|
||||
//==========================================================================/
|
||||
|
||||
//========== Initializing the Memory Matrix and pointers to it =============//
|
||||
//Tries to allocate enough space for the whole memory matrix
|
||||
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
// for Lyra2REv2, nCols = 4, v1 was using 8
|
||||
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64 : BLOCK_LEN_BLAKE2_SAFE_BYTES;
|
||||
|
||||
size_t sz = (size_t)ROW_LEN_BYTES * nRows;
|
||||
uint64_t *wholeMatrix = malloc(sz);
|
||||
if (wholeMatrix == NULL) {
|
||||
return -1;
|
||||
}
|
||||
memset(wholeMatrix, 0, sz);
|
||||
|
||||
//Allocates pointers to each row of the matrix
|
||||
uint64_t **memMatrix = malloc(sizeof(uint64_t*) * nRows);
|
||||
if (memMatrix == NULL) {
|
||||
return -1;
|
||||
}
|
||||
//Places the pointers in the correct positions
|
||||
uint64_t *ptrWord = wholeMatrix;
|
||||
for (i = 0; i < nRows; i++) {
|
||||
memMatrix[i] = ptrWord;
|
||||
ptrWord += ROW_LEN_INT64;
|
||||
}
|
||||
//==========================================================================/
|
||||
|
||||
//============= Getting the password + salt + basil padded with 10*1 ===============//
|
||||
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
|
||||
//but this ensures that the password copied locally will be overwritten as soon as possible
|
||||
|
||||
//First, we clean enough blocks for the password, salt, basil and padding
|
||||
int64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof(uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1;
|
||||
|
||||
byte *ptrByte = (byte*) wholeMatrix;
|
||||
|
||||
//Prepends the password
|
||||
memcpy(ptrByte, pwd, pwdlen);
|
||||
ptrByte += pwdlen;
|
||||
|
||||
//Concatenates the salt
|
||||
memcpy(ptrByte, salt, saltlen);
|
||||
ptrByte += saltlen;
|
||||
|
||||
memset(ptrByte, 0, (size_t) (nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - (saltlen + pwdlen)));
|
||||
|
||||
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
|
||||
memcpy(ptrByte, &kLen, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = pwdlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = saltlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = timeCost;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nRows;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nCols;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
|
||||
//Now comes the padding
|
||||
*ptrByte = 0x80; //first byte of padding: right after the password
|
||||
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
|
||||
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
|
||||
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
|
||||
//==========================================================================/
|
||||
|
||||
//======================= Initializing the Sponge State ====================//
|
||||
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
|
||||
uint64_t state[16];
|
||||
initState(state);
|
||||
//==========================================================================/
|
||||
|
||||
//================================ Setup Phase =============================//
|
||||
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
|
||||
ptrWord = wholeMatrix;
|
||||
for (i = 0; i < nBlocksInput; i++) {
|
||||
absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil)
|
||||
ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil)
|
||||
}
|
||||
|
||||
//Initializes M[0] and M[1]
|
||||
reducedSqueezeRow0(state, memMatrix[0], nCols); //The locally copied password is most likely overwritten here
|
||||
|
||||
reducedDuplexRow1(state, memMatrix[0], memMatrix[1], nCols);
|
||||
|
||||
do {
|
||||
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
|
||||
|
||||
reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
|
||||
|
||||
//updates the value of row* (deterministically picked during Setup))
|
||||
rowa = (rowa + step) & (window - 1);
|
||||
//update prev: it now points to the last row ever computed
|
||||
prev = row;
|
||||
//updates row: goes to the next row to be computed
|
||||
row++;
|
||||
|
||||
//Checks if all rows in the window where visited.
|
||||
if (rowa == 0) {
|
||||
step = window + gap; //changes the step: approximately doubles its value
|
||||
window *= 2; //doubles the size of the re-visitation window
|
||||
gap = -gap; //inverts the modifier to the step
|
||||
}
|
||||
|
||||
} while (row < nRows);
|
||||
//==========================================================================/
|
||||
|
||||
//============================ Wandering Phase =============================//
|
||||
row = 0; //Resets the visitation to the first row of the memory matrix
|
||||
for (tau = 1; tau <= timeCost; tau++) {
|
||||
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
|
||||
step = ((tau & 1) == 0) ? -1 : (nRows >> 1) - 1;
|
||||
do {
|
||||
//Selects a pseudorandom index row* (the only change in REv3)
|
||||
//------------------------------------------------------------------------------------------
|
||||
instance = state[instance & 0xF];
|
||||
rowa = state[instance & 0xF] & (unsigned int)(nRows-1);
|
||||
|
||||
//rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
//rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//------------------------------------------------------------------------------------------
|
||||
|
||||
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
|
||||
reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row], nCols);
|
||||
|
||||
//update prev: it now points to the last row ever computed
|
||||
prev = row;
|
||||
|
||||
//updates row: goes to the next row to be computed
|
||||
//------------------------------------------------------------------------------------------
|
||||
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//------------------------------------------------------------------------------------------
|
||||
|
||||
} while (row != 0);
|
||||
}
|
||||
|
||||
//============================ Wrap-up Phase ===============================//
|
||||
//Absorbs the last block of the memory matrix
|
||||
absorbBlock(state, memMatrix[rowa]);
|
||||
|
||||
//Squeezes the key
|
||||
squeeze(state, K, (unsigned int) kLen);
|
||||
|
||||
//========================= Freeing the memory =============================//
|
||||
free(memMatrix);
|
||||
free(wholeMatrix);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -38,5 +38,6 @@ typedef unsigned char byte;
|
||||
#endif
|
||||
|
||||
int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols);
|
||||
int LYRA2_3(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols);
|
||||
|
||||
#endif /* LYRA2_H_ */
|
||||
|
481
lyra2/cuda_lyra2v3.cu
Normal file
481
lyra2/cuda_lyra2v3.cu
Normal file
@ -0,0 +1,481 @@
|
||||
/**
|
||||
* Lyra2 (v3) CUDA Implementation
|
||||
*
|
||||
* Based on VTC sources
|
||||
*/
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <memory.h>
|
||||
#include "cuda_helper.h"
|
||||
|
||||
#include "cuda_lyra2v3_sm3.cuh"
|
||||
|
||||
|
||||
|
||||
#ifdef __INTELLISENSE__
|
||||
/* just for vstudio code colors */
|
||||
#define __CUDA_ARCH__ 500
|
||||
#endif
|
||||
|
||||
#define TPB 32
|
||||
|
||||
#if __CUDA_ARCH__ >= 500
|
||||
|
||||
#include "cuda_lyra2_vectors.h"
|
||||
|
||||
#define Nrow 4
|
||||
#define Ncol 4
|
||||
#define memshift 3
|
||||
|
||||
|
||||
__device__ uint2x4 *DMatrix;
|
||||
|
||||
__device__ __forceinline__ uint2 LD4S(const int index)
|
||||
{
|
||||
extern __shared__ uint2 shared_mem[];
|
||||
return shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x];
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void ST4S(const int index, const uint2 data)
|
||||
{
|
||||
extern __shared__ uint2 shared_mem[];
|
||||
shared_mem[(index * blockDim.y + threadIdx.y) * blockDim.x + threadIdx.x] = data;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ uint2 shuffle2(uint2 a, uint32_t b, uint32_t c)
|
||||
{
|
||||
return make_uint2(__shfl(a.x, b, c), __shfl(a.y, b, c));
|
||||
}
|
||||
|
||||
__device__ __forceinline__
|
||||
void Gfunc_v5(uint2 &a, uint2 &b, uint2 &c, uint2 &d)
|
||||
{
|
||||
a += b; d ^= a; d = SWAPUINT2(d);
|
||||
c += d; b ^= c; b = ROR2(b, 24);
|
||||
a += b; d ^= a; d = ROR2(d, 16);
|
||||
c += d; b ^= c; b = ROR2(b, 63);
|
||||
}
|
||||
|
||||
__device__ __forceinline__
|
||||
void round_lyra_v5(uint2x4 s[4])
|
||||
{
|
||||
Gfunc_v5(s[0].x, s[1].x, s[2].x, s[3].x);
|
||||
Gfunc_v5(s[0].y, s[1].y, s[2].y, s[3].y);
|
||||
Gfunc_v5(s[0].z, s[1].z, s[2].z, s[3].z);
|
||||
Gfunc_v5(s[0].w, s[1].w, s[2].w, s[3].w);
|
||||
|
||||
Gfunc_v5(s[0].x, s[1].y, s[2].z, s[3].w);
|
||||
Gfunc_v5(s[0].y, s[1].z, s[2].w, s[3].x);
|
||||
Gfunc_v5(s[0].z, s[1].w, s[2].x, s[3].y);
|
||||
Gfunc_v5(s[0].w, s[1].x, s[2].y, s[3].z);
|
||||
}
|
||||
|
||||
__device__ __forceinline__
|
||||
void round_lyra_v5(uint2 s[4])
|
||||
{
|
||||
Gfunc_v5(s[0], s[1], s[2], s[3]);
|
||||
s[1] = shuffle2(s[1], threadIdx.x + 1, 4);
|
||||
s[2] = shuffle2(s[2], threadIdx.x + 2, 4);
|
||||
s[3] = shuffle2(s[3], threadIdx.x + 3, 4);
|
||||
Gfunc_v5(s[0], s[1], s[2], s[3]);
|
||||
s[1] = shuffle2(s[1], threadIdx.x + 3, 4);
|
||||
s[2] = shuffle2(s[2], threadIdx.x + 2, 4);
|
||||
s[3] = shuffle2(s[3], threadIdx.x + 1, 4);
|
||||
}
|
||||
|
||||
__device__ __forceinline__
|
||||
void reduceDuplexRowSetup2(uint2 state[4])
|
||||
{
|
||||
uint2 state1[Ncol][3], state0[Ncol][3], state2[3];
|
||||
int i, j;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < Ncol; i++)
|
||||
{
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state0[Ncol - i - 1][j] = state[j];
|
||||
round_lyra_v5(state);
|
||||
}
|
||||
|
||||
//#pragma unroll 4
|
||||
for (i = 0; i < Ncol; i++)
|
||||
{
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state[j] ^= state0[i][j];
|
||||
|
||||
round_lyra_v5(state);
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state1[Ncol - i - 1][j] = state0[i][j];
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state1[Ncol - i - 1][j] ^= state[j];
|
||||
}
|
||||
|
||||
for (i = 0; i < Ncol; i++)
|
||||
{
|
||||
const uint32_t s0 = memshift * Ncol * 0 + i * memshift;
|
||||
const uint32_t s2 = memshift * Ncol * 2 + memshift * (Ncol - 1) - i*memshift;
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state[j] ^= state1[i][j] + state0[i][j];
|
||||
|
||||
round_lyra_v5(state);
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state2[j] = state1[i][j];
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state2[j] ^= state[j];
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
ST4S(s2 + j, state2[j]);
|
||||
|
||||
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4);
|
||||
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4);
|
||||
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
state0[i][0] ^= Data2;
|
||||
state0[i][1] ^= Data0;
|
||||
state0[i][2] ^= Data1;
|
||||
} else {
|
||||
state0[i][0] ^= Data0;
|
||||
state0[i][1] ^= Data1;
|
||||
state0[i][2] ^= Data2;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
ST4S(s0 + j, state0[i][j]);
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state0[i][j] = state2[j];
|
||||
|
||||
}
|
||||
|
||||
for (i = 0; i < Ncol; i++)
|
||||
{
|
||||
const uint32_t s1 = memshift * Ncol * 1 + i*memshift;
|
||||
const uint32_t s3 = memshift * Ncol * 3 + memshift * (Ncol - 1) - i*memshift;
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state[j] ^= state1[i][j] + state0[Ncol - i - 1][j];
|
||||
|
||||
round_lyra_v5(state);
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state0[Ncol - i - 1][j] ^= state[j];
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
ST4S(s3 + j, state0[Ncol - i - 1][j]);
|
||||
|
||||
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4);
|
||||
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4);
|
||||
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
state1[i][0] ^= Data2;
|
||||
state1[i][1] ^= Data0;
|
||||
state1[i][2] ^= Data1;
|
||||
} else {
|
||||
state1[i][0] ^= Data0;
|
||||
state1[i][1] ^= Data1;
|
||||
state1[i][2] ^= Data2;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
ST4S(s1 + j, state1[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
__device__
|
||||
void reduceDuplexRowt2(const int rowIn, const int rowInOut, const int rowOut, uint2 state[4])
|
||||
{
|
||||
uint2 state1[3], state2[3];
|
||||
const uint32_t ps1 = memshift * Ncol * rowIn;
|
||||
const uint32_t ps2 = memshift * Ncol * rowInOut;
|
||||
const uint32_t ps3 = memshift * Ncol * rowOut;
|
||||
|
||||
for (int i = 0; i < Ncol; i++)
|
||||
{
|
||||
const uint32_t s1 = ps1 + i*memshift;
|
||||
const uint32_t s2 = ps2 + i*memshift;
|
||||
const uint32_t s3 = ps3 + i*memshift;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 3; j++)
|
||||
state1[j] = LD4S(s1 + j);
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 3; j++)
|
||||
state2[j] = LD4S(s2 + j);
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 3; j++)
|
||||
state[j] ^= state1[j] + state2[j];
|
||||
|
||||
round_lyra_v5(state);
|
||||
|
||||
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4);
|
||||
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4);
|
||||
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
state2[0] ^= Data2;
|
||||
state2[1] ^= Data0;
|
||||
state2[2] ^= Data1;
|
||||
} else {
|
||||
state2[0] ^= Data0;
|
||||
state2[1] ^= Data1;
|
||||
state2[2] ^= Data2;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 3; j++)
|
||||
ST4S(s2 + j, state2[j]);
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 3; j++)
|
||||
ST4S(s3 + j, LD4S(s3 + j) ^ state[j]);
|
||||
}
|
||||
}
|
||||
|
||||
__device__
|
||||
void reduceDuplexRowt2x4(const int rowInOut, uint2 state[4])
|
||||
{
|
||||
const int rowIn = 2;
|
||||
const int rowOut = 3;
|
||||
|
||||
int i, j;
|
||||
uint2 last[3];
|
||||
const uint32_t ps1 = memshift * Ncol * rowIn;
|
||||
const uint32_t ps2 = memshift * Ncol * rowInOut;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 3; j++)
|
||||
last[j] = LD4S(ps2 + j);
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 3; j++)
|
||||
state[j] ^= LD4S(ps1 + j) + last[j];
|
||||
|
||||
round_lyra_v5(state);
|
||||
|
||||
uint2 Data0 = shuffle2(state[0], threadIdx.x - 1, 4);
|
||||
uint2 Data1 = shuffle2(state[1], threadIdx.x - 1, 4);
|
||||
uint2 Data2 = shuffle2(state[2], threadIdx.x - 1, 4);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
last[0] ^= Data2;
|
||||
last[1] ^= Data0;
|
||||
last[2] ^= Data1;
|
||||
} else {
|
||||
last[0] ^= Data0;
|
||||
last[1] ^= Data1;
|
||||
last[2] ^= Data2;
|
||||
}
|
||||
|
||||
if (rowInOut == rowOut)
|
||||
{
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
last[j] ^= state[j];
|
||||
}
|
||||
|
||||
for (i = 1; i < Ncol; i++)
|
||||
{
|
||||
const uint32_t s1 = ps1 + i*memshift;
|
||||
const uint32_t s2 = ps2 + i*memshift;
|
||||
|
||||
#pragma unroll
|
||||
for (j = 0; j < 3; j++)
|
||||
state[j] ^= LD4S(s1 + j) + LD4S(s2 + j);
|
||||
|
||||
round_lyra_v5(state);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < 3; j++)
|
||||
state[j] ^= last[j];
|
||||
}
|
||||
|
||||
__global__
|
||||
__launch_bounds__(TPB, 1)
|
||||
void lyra2v3_gpu_hash_32_1(uint32_t threads, uint2 *inputHash)
|
||||
{
|
||||
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
const uint2x4 blake2b_IV[2] = {
|
||||
0xf3bcc908UL, 0x6a09e667UL, 0x84caa73bUL, 0xbb67ae85UL,
|
||||
0xfe94f82bUL, 0x3c6ef372UL, 0x5f1d36f1UL, 0xa54ff53aUL,
|
||||
0xade682d1UL, 0x510e527fUL, 0x2b3e6c1fUL, 0x9b05688cUL,
|
||||
0xfb41bd6bUL, 0x1f83d9abUL, 0x137e2179UL, 0x5be0cd19UL
|
||||
};
|
||||
|
||||
const uint2x4 Mask[2] = {
|
||||
0x00000020UL, 0x00000000UL, 0x00000020UL, 0x00000000UL,
|
||||
0x00000020UL, 0x00000000UL, 0x00000001UL, 0x00000000UL,
|
||||
0x00000004UL, 0x00000000UL, 0x00000004UL, 0x00000000UL,
|
||||
0x00000080UL, 0x00000000UL, 0x00000000UL, 0x01000000UL
|
||||
};
|
||||
|
||||
uint2x4 state[4];
|
||||
|
||||
if (thread < threads)
|
||||
{
|
||||
state[0].x = state[1].x = __ldg(&inputHash[thread + threads * 0]);
|
||||
state[0].y = state[1].y = __ldg(&inputHash[thread + threads * 1]);
|
||||
state[0].z = state[1].z = __ldg(&inputHash[thread + threads * 2]);
|
||||
state[0].w = state[1].w = __ldg(&inputHash[thread + threads * 3]);
|
||||
state[2] = blake2b_IV[0];
|
||||
state[3] = blake2b_IV[1];
|
||||
|
||||
for (int i = 0; i<12; i++)
|
||||
round_lyra_v5(state);
|
||||
|
||||
state[0] ^= Mask[0];
|
||||
state[1] ^= Mask[1];
|
||||
|
||||
for (int i = 0; i<12; i++)
|
||||
round_lyra_v5(state);
|
||||
|
||||
DMatrix[blockDim.x * gridDim.x * 0 + thread] = state[0];
|
||||
DMatrix[blockDim.x * gridDim.x * 1 + thread] = state[1];
|
||||
DMatrix[blockDim.x * gridDim.x * 2 + thread] = state[2];
|
||||
DMatrix[blockDim.x * gridDim.x * 3 + thread] = state[3];
|
||||
}
|
||||
}
|
||||
|
||||
__global__
|
||||
__launch_bounds__(TPB, 1)
|
||||
void lyra2v3_gpu_hash_32_2(uint32_t threads)
|
||||
{
|
||||
const uint32_t thread = blockDim.y * blockIdx.x + threadIdx.y;
|
||||
|
||||
if (thread < threads)
|
||||
{
|
||||
uint2 state[4];
|
||||
state[0] = ((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
|
||||
state[1] = ((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
|
||||
state[2] = ((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
|
||||
state[3] = ((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x];
|
||||
|
||||
reduceDuplexRowSetup2(state);
|
||||
|
||||
uint32_t rowa;
|
||||
int prev = 3;
|
||||
unsigned int instance = 0;
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
instance = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4);
|
||||
rowa = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4) & 0x3;
|
||||
|
||||
//rowa = __shfl(state[0].x, 0, 4) & 3;
|
||||
reduceDuplexRowt2(prev, rowa, i, state);
|
||||
prev = i;
|
||||
}
|
||||
|
||||
instance = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4);
|
||||
rowa = __shfl(state[(instance >> 2) & 0x3].x, instance & 0x3, 4) & 0x3;
|
||||
|
||||
//rowa = __shfl(state[0].x, 0, 4) & 3;
|
||||
reduceDuplexRowt2x4(rowa, state);
|
||||
|
||||
((uint2*)DMatrix)[(0 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[0];
|
||||
((uint2*)DMatrix)[(1 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[1];
|
||||
((uint2*)DMatrix)[(2 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[2];
|
||||
((uint2*)DMatrix)[(3 * gridDim.x * blockDim.y + thread) * blockDim.x + threadIdx.x] = state[3];
|
||||
}
|
||||
}
|
||||
|
||||
__global__
|
||||
__launch_bounds__(TPB, 1)
|
||||
void lyra2v3_gpu_hash_32_3(uint32_t threads, uint2 *outputHash)
|
||||
{
|
||||
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
uint2x4 state[4];
|
||||
|
||||
if (thread < threads)
|
||||
{
|
||||
state[0] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 0 + thread]);
|
||||
state[1] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 1 + thread]);
|
||||
state[2] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 2 + thread]);
|
||||
state[3] = __ldg4(&DMatrix[blockDim.x * gridDim.x * 3 + thread]);
|
||||
|
||||
for (int i = 0; i < 12; i++)
|
||||
round_lyra_v5(state);
|
||||
|
||||
outputHash[thread + threads * 0] = state[0].x;
|
||||
outputHash[thread + threads * 1] = state[0].y;
|
||||
outputHash[thread + threads * 2] = state[0].z;
|
||||
outputHash[thread + threads * 3] = state[0].w;
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
#include "cuda_helper.h"
|
||||
#if __CUDA_ARCH__ < 200
|
||||
__device__ void* DMatrix;
|
||||
#endif
|
||||
__global__ void lyra2v3_gpu_hash_32_1(uint32_t threads, uint2 *inputHash) {}
|
||||
__global__ void lyra2v3_gpu_hash_32_2(uint32_t threads) {}
|
||||
__global__ void lyra2v3_gpu_hash_32_3(uint32_t threads, uint2 *outputHash) {}
|
||||
#endif
|
||||
|
||||
|
||||
__host__
|
||||
void lyra2v3_cpu_init(int thr_id, uint32_t threads, uint64_t *d_matrix)
|
||||
{
|
||||
cuda_get_arch(thr_id);
|
||||
// just assign the device pointer allocated in main loop
|
||||
cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice);
|
||||
}
|
||||
|
||||
__host__
|
||||
void lyra2v3_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, int order)
|
||||
{
|
||||
int dev_id = device_map[thr_id % MAX_GPUS];
|
||||
|
||||
if (device_sm[dev_id] >= 500) {
|
||||
|
||||
const uint32_t tpb = TPB;
|
||||
|
||||
dim3 grid2((threads + tpb - 1) / tpb);
|
||||
dim3 block2(tpb);
|
||||
dim3 grid4((threads * 4 + tpb - 1) / tpb);
|
||||
dim3 block4(4, tpb / 4);
|
||||
|
||||
lyra2v3_gpu_hash_32_1 <<< grid2, block2 >>> (threads, (uint2*)g_hash);
|
||||
lyra2v3_gpu_hash_32_2 <<< grid4, block4, 48 * sizeof(uint2) * tpb >>> (threads);
|
||||
lyra2v3_gpu_hash_32_3 <<< grid2, block2 >>> (threads, (uint2*)g_hash);
|
||||
|
||||
} else {
|
||||
|
||||
uint32_t tpb = 16;
|
||||
if (cuda_arch[dev_id] >= 350) tpb = TPB35;
|
||||
else if (cuda_arch[dev_id] >= 300) tpb = TPB30;
|
||||
else if (cuda_arch[dev_id] >= 200) tpb = TPB20;
|
||||
|
||||
dim3 grid((threads + tpb - 1) / tpb);
|
||||
dim3 block(tpb);
|
||||
lyra2v3_gpu_hash_32_v3 <<< grid, block >>> (threads, startNounce, (uint2*)g_hash);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
348
lyra2/cuda_lyra2v3_sm3.cuh
Normal file
348
lyra2/cuda_lyra2v3_sm3.cuh
Normal file
@ -0,0 +1,348 @@
|
||||
/* SM 2/3/3.5 Variant for lyra2REv2 */
|
||||
|
||||
#ifdef __INTELLISENSE__
|
||||
/* just for vstudio code colors, only uncomment that temporary, dont commit it */
|
||||
//#undef __CUDA_ARCH__
|
||||
//#define __CUDA_ARCH__ 500
|
||||
#endif
|
||||
|
||||
#define TPB20 64
|
||||
#define TPB30 64
|
||||
#define TPB35 64
|
||||
|
||||
#if __CUDA_ARCH__ >= 200 && __CUDA_ARCH__ < 500
|
||||
|
||||
#include "cuda_lyra2_vectors.h"
|
||||
|
||||
#define Nrow 4
|
||||
#define Ncol 4
|
||||
|
||||
#define vectype ulonglong4
|
||||
#define memshift 4
|
||||
|
||||
__device__ vectype *DMatrix;
|
||||
|
||||
static __device__ __forceinline__
|
||||
void Gfunc_v35(unsigned long long &a, unsigned long long &b, unsigned long long &c, unsigned long long &d)
|
||||
{
|
||||
a += b; d ^= a; d = ROTR64(d, 32);
|
||||
c += d; b ^= c; b = ROTR64(b, 24);
|
||||
a += b; d ^= a; d = ROTR64(d, 16);
|
||||
c += d; b ^= c; b = ROTR64(b, 63);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__
|
||||
void round_lyra_v35(vectype* s)
|
||||
{
|
||||
Gfunc_v35(s[0].x, s[1].x, s[2].x, s[3].x);
|
||||
Gfunc_v35(s[0].y, s[1].y, s[2].y, s[3].y);
|
||||
Gfunc_v35(s[0].z, s[1].z, s[2].z, s[3].z);
|
||||
Gfunc_v35(s[0].w, s[1].w, s[2].w, s[3].w);
|
||||
|
||||
Gfunc_v35(s[0].x, s[1].y, s[2].z, s[3].w);
|
||||
Gfunc_v35(s[0].y, s[1].z, s[2].w, s[3].x);
|
||||
Gfunc_v35(s[0].z, s[1].w, s[2].x, s[3].y);
|
||||
Gfunc_v35(s[0].w, s[1].x, s[2].y, s[3].z);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__
|
||||
void reduceDuplexV3(vectype state[4], uint32_t thread)
|
||||
{
|
||||
vectype state1[3];
|
||||
uint32_t ps1 = (Nrow * Ncol * memshift * thread);
|
||||
uint32_t ps2 = (memshift * (Ncol - 1) * Nrow + memshift * 1 + Nrow * Ncol * memshift * thread);
|
||||
|
||||
#pragma unroll 4
|
||||
for (int i = 0; i < Ncol; i++)
|
||||
{
|
||||
uint32_t s1 = ps1 + Nrow * i *memshift;
|
||||
uint32_t s2 = ps2 - Nrow * i *memshift;
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state1[j] = __ldg4(&(DMatrix + s1)[j]);
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state[j] ^= state1[j];
|
||||
round_lyra_v35(state);
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state1[j] ^= state[j];
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
(DMatrix + s2)[j] = state1[j];
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__
|
||||
void reduceDuplexRowSetupV3(const int rowIn, const int rowInOut, const int rowOut, vectype state[4], uint32_t thread)
|
||||
{
|
||||
vectype state2[3], state1[3];
|
||||
|
||||
uint32_t ps1 = (memshift * rowIn + Nrow * Ncol * memshift * thread);
|
||||
uint32_t ps2 = (memshift * rowInOut + Nrow * Ncol * memshift * thread);
|
||||
uint32_t ps3 = (Nrow * memshift * (Ncol - 1) + memshift * rowOut + Nrow * Ncol * memshift * thread);
|
||||
|
||||
for (int i = 0; i < Ncol; i++)
|
||||
{
|
||||
uint32_t s1 = ps1 + Nrow*i*memshift;
|
||||
uint32_t s2 = ps2 + Nrow*i*memshift;
|
||||
uint32_t s3 = ps3 - Nrow*i*memshift;
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state1[j] = __ldg4(&(DMatrix + s1 )[j]);
|
||||
for (int j = 0; j < 3; j++)
|
||||
state2[j] = __ldg4(&(DMatrix + s2 )[j]);
|
||||
for (int j = 0; j < 3; j++) {
|
||||
vectype tmp = state1[j] + state2[j];
|
||||
state[j] ^= tmp;
|
||||
}
|
||||
|
||||
round_lyra_v35(state);
|
||||
|
||||
for (int j = 0; j < 3; j++) {
|
||||
state1[j] ^= state[j];
|
||||
(DMatrix + s3)[j] = state1[j];
|
||||
}
|
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11];
|
||||
for (int j = 0; j < 11; j++)
|
||||
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
(DMatrix + s2)[j] = state2[j];
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__
|
||||
void reduceDuplexRowtV3(const int rowIn, const int rowInOut, const int rowOut, vectype* state, uint32_t thread)
|
||||
{
|
||||
vectype state1[3], state2[3];
|
||||
uint32_t ps1 = (memshift * rowIn + Nrow * Ncol * memshift * thread);
|
||||
uint32_t ps2 = (memshift * rowInOut + Nrow * Ncol * memshift * thread);
|
||||
uint32_t ps3 = (memshift * rowOut + Nrow * Ncol * memshift * thread);
|
||||
|
||||
#pragma nounroll
|
||||
for (int i = 0; i < Ncol; i++)
|
||||
{
|
||||
uint32_t s1 = ps1 + Nrow * i*memshift;
|
||||
uint32_t s2 = ps2 + Nrow * i*memshift;
|
||||
uint32_t s3 = ps3 + Nrow * i*memshift;
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state1[j] = __ldg4(&(DMatrix + s1)[j]);
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state2[j] = __ldg4(&(DMatrix + s2)[j]);
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state1[j] += state2[j];
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state[j] ^= state1[j];
|
||||
|
||||
round_lyra_v35(state);
|
||||
|
||||
((uint2*)state2)[0] ^= ((uint2*)state)[11];
|
||||
|
||||
for (int j = 0; j < 11; j++)
|
||||
((uint2*)state2)[j + 1] ^= ((uint2*)state)[j];
|
||||
|
||||
if (rowInOut != rowOut) {
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
(DMatrix + s2)[j] = state2[j];
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
(DMatrix + s3)[j] ^= state[j];
|
||||
|
||||
} else {
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state2[j] ^= state[j];
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
(DMatrix + s2)[j] = state2[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
__global__ __launch_bounds__(TPB35, 1)
|
||||
void lyra2v3_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
|
||||
{
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
|
||||
vectype state[4];
|
||||
vectype blake2b_IV[2];
|
||||
vectype padding[2];
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
|
||||
((uint16*)blake2b_IV)[0] = make_uint16(
|
||||
0xf3bcc908, 0x6a09e667 , 0x84caa73b, 0xbb67ae85,
|
||||
0xfe94f82b, 0x3c6ef372 , 0x5f1d36f1, 0xa54ff53a,
|
||||
0xade682d1, 0x510e527f , 0x2b3e6c1f, 0x9b05688c,
|
||||
0xfb41bd6b, 0x1f83d9ab , 0x137e2179, 0x5be0cd19
|
||||
);
|
||||
((uint16*)padding)[0] = make_uint16(
|
||||
0x20, 0x0 , 0x20, 0x0 , 0x20, 0x0 , 0x01, 0x0,
|
||||
0x04, 0x0 , 0x04, 0x0 , 0x80, 0x0 , 0x0, 0x01000000
|
||||
);
|
||||
}
|
||||
|
||||
if (thread < threads)
|
||||
{
|
||||
((uint2*)state)[0] = __ldg(&outputHash[thread]);
|
||||
((uint2*)state)[1] = __ldg(&outputHash[thread + threads]);
|
||||
((uint2*)state)[2] = __ldg(&outputHash[thread + 2 * threads]);
|
||||
((uint2*)state)[3] = __ldg(&outputHash[thread + 3 * threads]);
|
||||
|
||||
state[1] = state[0];
|
||||
state[2] = shuffle4(((vectype*)blake2b_IV)[0], 0);
|
||||
state[3] = shuffle4(((vectype*)blake2b_IV)[1], 0);
|
||||
|
||||
for (int i = 0; i<12; i++)
|
||||
round_lyra_v35(state);
|
||||
|
||||
state[0] ^= shuffle4(((vectype*)padding)[0], 0);
|
||||
state[1] ^= shuffle4(((vectype*)padding)[1], 0);
|
||||
|
||||
for (int i = 0; i<12; i++)
|
||||
round_lyra_v35(state);
|
||||
|
||||
uint32_t ps1 = (4 * memshift * 3 + 16 * memshift * thread);
|
||||
|
||||
//#pragma unroll 4
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
uint32_t s1 = ps1 - 4 * memshift * i;
|
||||
for (int j = 0; j < 3; j++)
|
||||
(DMatrix + s1)[j] = (state)[j];
|
||||
|
||||
round_lyra_v35(state);
|
||||
}
|
||||
|
||||
reduceDuplexV3(state, thread);
|
||||
reduceDuplexRowSetupV3(1, 0, 2, state, thread);
|
||||
reduceDuplexRowSetupV3(2, 1, 3, state, thread);
|
||||
|
||||
unsigned int instance = 0;
|
||||
uint32_t rowa;
|
||||
int prev = 3;
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
//rowa = ((uint2*)state)[0].x & 3;
|
||||
|
||||
instance = ((uint2*)state)[instance & 0xf].x;
|
||||
rowa = ((uint2*)state)[instance & 0xf].x & 0x3;
|
||||
reduceDuplexRowtV3(prev, rowa, i, state, thread);
|
||||
prev = i;
|
||||
}
|
||||
|
||||
uint32_t shift = (memshift * rowa + 16 * memshift * thread);
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
|
||||
|
||||
for (int i = 0; i < 12; i++)
|
||||
round_lyra_v35(state);
|
||||
|
||||
outputHash[thread] = ((uint2*)state)[0];
|
||||
outputHash[thread + threads] = ((uint2*)state)[1];
|
||||
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
|
||||
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
|
||||
|
||||
} //thread
|
||||
}
|
||||
#elif __CUDA_ARCH__ >= 200
|
||||
__global__ __launch_bounds__(TPB20, 1)
|
||||
void lyra2v3_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash)
|
||||
{
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
|
||||
vectype state[4];
|
||||
vectype blake2b_IV[2];
|
||||
vectype padding[2];
|
||||
|
||||
((uint16*)blake2b_IV)[0] = make_uint16(
|
||||
0xf3bcc908, 0x6a09e667, 0x84caa73b, 0xbb67ae85,
|
||||
0xfe94f82b, 0x3c6ef372, 0x5f1d36f1, 0xa54ff53a,
|
||||
0xade682d1, 0x510e527f, 0x2b3e6c1f, 0x9b05688c,
|
||||
0xfb41bd6b, 0x1f83d9ab, 0x137e2179, 0x5be0cd19
|
||||
);
|
||||
((uint16*)padding)[0] = make_uint16(
|
||||
0x20, 0x0, 0x20, 0x0, 0x20, 0x0, 0x01, 0x0,
|
||||
0x04, 0x0, 0x04, 0x0, 0x80, 0x0, 0x0, 0x01000000
|
||||
);
|
||||
|
||||
if (thread < threads)
|
||||
{
|
||||
|
||||
((uint2*)state)[0] = outputHash[thread];
|
||||
((uint2*)state)[1] = outputHash[thread + threads];
|
||||
((uint2*)state)[2] = outputHash[thread + 2 * threads];
|
||||
((uint2*)state)[3] = outputHash[thread + 3 * threads];
|
||||
|
||||
state[1] = state[0];
|
||||
state[2] = ((vectype*)blake2b_IV)[0];
|
||||
state[3] = ((vectype*)blake2b_IV)[1];
|
||||
|
||||
for (int i = 0; i<12; i++)
|
||||
round_lyra_v35(state);
|
||||
|
||||
state[0] ^= ((vectype*)padding)[0];
|
||||
state[1] ^= ((vectype*)padding)[1];
|
||||
|
||||
for (int i = 0; i<12; i++)
|
||||
round_lyra_v35(state);
|
||||
|
||||
uint32_t ps1 = (4 * memshift * 3 + 16 * memshift * thread);
|
||||
|
||||
//#pragma unroll 4
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
uint32_t s1 = ps1 - 4 * memshift * i;
|
||||
for (int j = 0; j < 3; j++)
|
||||
(DMatrix + s1)[j] = (state)[j];
|
||||
|
||||
round_lyra_v35(state);
|
||||
}
|
||||
|
||||
reduceDuplexV3(state, thread);
|
||||
reduceDuplexRowSetupV3(1, 0, 2, state, thread);
|
||||
reduceDuplexRowSetupV3(2, 1, 3, state, thread);
|
||||
|
||||
uint instance = 0;
|
||||
uint32_t rowa;
|
||||
int prev = 3;
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
// rowa = ((uint2*)state)[0].x & 3;
|
||||
|
||||
instance = ((uint2*)state)[instance & 0xf];
|
||||
rowa = ((uint2*)state)[instance & 0xf] & 0x3;
|
||||
reduceDuplexRowtV3(prev, rowa, i, state, thread);
|
||||
prev = i;
|
||||
}
|
||||
|
||||
uint32_t shift = (memshift * rowa + 16 * memshift * thread);
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
state[j] ^= __ldg4(&(DMatrix + shift)[j]);
|
||||
|
||||
for (int i = 0; i < 12; i++)
|
||||
round_lyra_v35(state);
|
||||
|
||||
outputHash[thread] = ((uint2*)state)[0];
|
||||
outputHash[thread + threads] = ((uint2*)state)[1];
|
||||
outputHash[thread + 2 * threads] = ((uint2*)state)[2];
|
||||
outputHash[thread + 3 * threads] = ((uint2*)state)[3];
|
||||
|
||||
} //thread
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
/* host & sm5+ */
|
||||
__global__ void lyra2v3_gpu_hash_32_v3(uint32_t threads, uint32_t startNounce, uint2 *outputHash) {}
|
||||
#endif
|
182
lyra2/lyra2REv3.cu
Normal file
182
lyra2/lyra2REv3.cu
Normal file
@ -0,0 +1,182 @@
|
||||
extern "C" {
|
||||
#include "sph/sph_blake.h"
|
||||
#include "sph/sph_bmw.h"
|
||||
#include "sph/sph_cubehash.h"
|
||||
#include "lyra2/Lyra2.h"
|
||||
}
|
||||
|
||||
#include <miner.h>
|
||||
#include <cuda_helper.h>
|
||||
|
||||
static uint64_t *d_hash[MAX_GPUS];
|
||||
static uint64_t* d_matrix[MAX_GPUS];
|
||||
|
||||
extern void blake256_cpu_init(int thr_id, uint32_t threads);
|
||||
extern void blake256_cpu_setBlock_80(uint32_t *pdata);
|
||||
extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order);
|
||||
|
||||
extern void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order);
|
||||
|
||||
extern void lyra2v3_setTarget(const void *pTargetIn);
|
||||
extern void lyra2v3_cpu_init(int thr_id, uint32_t threads, uint64_t* d_matrix);
|
||||
extern void lyra2v3_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
|
||||
|
||||
extern void lyra2v3_cpu_hash_32_targ(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces);
|
||||
|
||||
extern void bmw256_setTarget(const void *ptarget);
|
||||
extern void bmw256_cpu_init(int thr_id, uint32_t threads);
|
||||
extern void bmw256_cpu_free(int thr_id);
|
||||
extern void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces);
|
||||
|
||||
extern "C" void lyra2v3_hash(void *state, const void *input)
|
||||
{
|
||||
uint32_t hashA[8], hashB[8];
|
||||
|
||||
sph_blake256_context ctx_blake;
|
||||
sph_cubehash256_context ctx_cube;
|
||||
sph_bmw256_context ctx_bmw;
|
||||
|
||||
sph_blake256_set_rounds(14);
|
||||
|
||||
sph_blake256_init(&ctx_blake);
|
||||
sph_blake256(&ctx_blake, input, 80);
|
||||
sph_blake256_close(&ctx_blake, hashA);
|
||||
|
||||
LYRA2_3(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4);
|
||||
|
||||
sph_cubehash256_init(&ctx_cube);
|
||||
sph_cubehash256(&ctx_cube, hashB, 32);
|
||||
sph_cubehash256_close(&ctx_cube, hashA);
|
||||
|
||||
LYRA2_3(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4);
|
||||
|
||||
sph_bmw256_init(&ctx_bmw);
|
||||
sph_bmw256(&ctx_bmw, hashB, 32);
|
||||
sph_bmw256_close(&ctx_bmw, hashA);
|
||||
|
||||
memcpy(state, hashA, 32);
|
||||
}
|
||||
|
||||
static bool init[MAX_GPUS] = { 0 };
|
||||
|
||||
extern "C" int scanhash_lyra2v3(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
int dev_id = device_map[thr_id];
|
||||
int intensity = (device_sm[dev_id] < 500) ? 18 : is_windows() ? 19 : 20;
|
||||
if (strstr(device_name[dev_id], "GTX 10")) intensity = 20;
|
||||
uint32_t throughput = cuda_default_throughput(dev_id, 1UL << intensity);
|
||||
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
|
||||
|
||||
if (opt_benchmark)
|
||||
ptarget[7] = 0x000f;
|
||||
|
||||
|
||||
if (!init[thr_id])
|
||||
{
|
||||
size_t matrix_sz = 16 * sizeof(uint64_t) * 4 * 3;
|
||||
cudaSetDevice(dev_id);
|
||||
if (opt_cudaschedule == -1 && gpu_threads == 1) {
|
||||
cudaDeviceReset();
|
||||
// reduce cpu usage
|
||||
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
|
||||
CUDA_LOG_ERROR();
|
||||
}
|
||||
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
|
||||
|
||||
blake256_cpu_init(thr_id, throughput);
|
||||
bmw256_cpu_init(thr_id, throughput);
|
||||
|
||||
cuda_get_arch(thr_id); // cuda_arch[] also used in cubehash256
|
||||
|
||||
// SM 3 implentation requires a bit more memory
|
||||
if (device_sm[dev_id] < 500 || cuda_arch[dev_id] < 500)
|
||||
matrix_sz = 16 * sizeof(uint64_t) * 4 * 4;
|
||||
|
||||
CUDA_SAFE_CALL(cudaMalloc(&d_matrix[thr_id], matrix_sz * throughput));
|
||||
lyra2v3_cpu_init(thr_id, throughput, d_matrix[thr_id]);
|
||||
|
||||
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput));
|
||||
|
||||
api_set_throughput(thr_id, throughput);
|
||||
init[thr_id] = true;
|
||||
}
|
||||
|
||||
uint32_t endiandata[20];
|
||||
for (int k=0; k < 20; k++)
|
||||
be32enc(&endiandata[k], pdata[k]);
|
||||
|
||||
blake256_cpu_setBlock_80(pdata);
|
||||
bmw256_setTarget(ptarget);
|
||||
|
||||
do {
|
||||
int order = 0;
|
||||
|
||||
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||
lyra2v3_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||
cubehash256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||
lyra2v3_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||
memset(work->nonces, 0, sizeof(work->nonces));
|
||||
bmw256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], work->nonces);
|
||||
|
||||
*hashes_done = pdata[19] - first_nonce + throughput;
|
||||
|
||||
if (work->nonces[0] != 0)
|
||||
{
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t _ALIGN(64) vhash[8];
|
||||
be32enc(&endiandata[19], work->nonces[0]);
|
||||
lyra2v3_hash(vhash, endiandata);
|
||||
|
||||
if (vhash[7] <= Htarg && fulltest(vhash, ptarget)) {
|
||||
work->valid_nonces = 1;
|
||||
work_set_target_ratio(work, vhash);
|
||||
if (work->nonces[1] != 0) {
|
||||
be32enc(&endiandata[19], work->nonces[1]);
|
||||
lyra2v3_hash(vhash, endiandata);
|
||||
bn_set_target_ratio(work, vhash, 1);
|
||||
work->valid_nonces++;
|
||||
pdata[19] = max(work->nonces[0], work->nonces[1]) + 1;
|
||||
} else {
|
||||
pdata[19] = work->nonces[0] + 1; // cursor
|
||||
}
|
||||
return work->valid_nonces;
|
||||
}
|
||||
else if (vhash[7] > Htarg) {
|
||||
gpu_increment_reject(thr_id);
|
||||
if (!opt_quiet)
|
||||
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]);
|
||||
pdata[19] = work->nonces[0] + 1;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if ((uint64_t)throughput + pdata[19] >= max_nonce) {
|
||||
pdata[19] = max_nonce;
|
||||
break;
|
||||
}
|
||||
pdata[19] += throughput;
|
||||
|
||||
} while (!work_restart[thr_id].restart && !abort_flag);
|
||||
|
||||
*hashes_done = pdata[19] - first_nonce;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// cleanup
|
||||
extern "C" void free_lyra2v3(int thr_id)
|
||||
{
|
||||
if (!init[thr_id])
|
||||
return;
|
||||
|
||||
cudaThreadSynchronize();
|
||||
|
||||
cudaFree(d_hash[thr_id]);
|
||||
cudaFree(d_matrix[thr_id]);
|
||||
|
||||
init[thr_id] = false;
|
||||
|
||||
cudaDeviceSynchronize();
|
||||
}
|
3
miner.h
3
miner.h
@ -298,6 +298,7 @@ extern int scanhash_lbry(int thr_id, struct work *work, uint32_t max_nonce, unsi
|
||||
extern int scanhash_luffa(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done);
|
||||
extern int scanhash_lyra2(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done);
|
||||
extern int scanhash_lyra2v2(int thr_id,struct work* work, uint32_t max_nonce, unsigned long *hashes_done);
|
||||
extern int scanhash_lyra2v3(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done);
|
||||
extern int scanhash_lyra2Z(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done);
|
||||
extern int scanhash_myriad(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done);
|
||||
extern int scanhash_neoscrypt(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done);
|
||||
@ -372,6 +373,7 @@ extern void free_lbry(int thr_id);
|
||||
extern void free_luffa(int thr_id);
|
||||
extern void free_lyra2(int thr_id);
|
||||
extern void free_lyra2v2(int thr_id);
|
||||
extern void free_lyra2v3(int thr_id);
|
||||
extern void free_lyra2Z(int thr_id);
|
||||
extern void free_myriad(int thr_id);
|
||||
extern void free_neoscrypt(int thr_id);
|
||||
@ -929,6 +931,7 @@ void jha_hash(void *output, const void *input);
|
||||
void lbry_hash(void *output, const void *input);
|
||||
void lyra2re_hash(void *state, const void *input);
|
||||
void lyra2v2_hash(void *state, const void *input);
|
||||
void lyra2v3_hash(void *state, const void *input);
|
||||
void lyra2Z_hash(void *state, const void *input);
|
||||
void myriadhash(void *state, const void *input);
|
||||
void neoscrypt(uchar *output, const uchar *input, uint32_t profile);
|
||||
|
Loading…
x
Reference in New Issue
Block a user