|
|
|
@ -50,59 +50,60 @@ const uint64_t c_u512[16] =
@@ -50,59 +50,60 @@ const uint64_t c_u512[16] =
|
|
|
|
|
0x0801f2e2858efc16ULL, 0x636920d871574e69ULL |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
#define G(a,b,c,d,e) \ |
|
|
|
|
v[a] += (m[sigma[i][e]] ^ u512[sigma[i][e+1]]) + v[b];\ |
|
|
|
|
v[d] = ROTR( v[d] ^ v[a],32); \ |
|
|
|
|
v[c] += v[d]; \ |
|
|
|
|
v[b] = ROTR( v[b] ^ v[c],25); \ |
|
|
|
|
v[a] += (m[sigma[i][e+1]] ^ u512[sigma[i][e]])+v[b]; \ |
|
|
|
|
v[d] = ROTR( v[d] ^ v[a],16); \ |
|
|
|
|
v[c] += v[d]; \ |
|
|
|
|
v[b] = ROTR( v[b] ^ v[c],11); |
|
|
|
|
|
|
|
|
|
#define G(a,b,c,d,x) { \ |
|
|
|
|
uint32_t idx1 = sigma[i][x]; \ |
|
|
|
|
uint32_t idx2 = sigma[i][x+1]; \ |
|
|
|
|
v[a] += (m[idx1] ^ u512[idx2]) + v[b]; \ |
|
|
|
|
v[d] = ROTR( v[d] ^ v[a], 32); \ |
|
|
|
|
v[c] += v[d]; \ |
|
|
|
|
v[b] = ROTR( v[b] ^ v[c], 25); \ |
|
|
|
|
v[a] += (m[idx2] ^ u512[idx1]) + v[b]; \ |
|
|
|
|
v[d] = ROTR( v[d] ^ v[a], 16); \ |
|
|
|
|
v[c] += v[d]; \ |
|
|
|
|
v[b] = ROTR( v[b] ^ v[c], 11); \ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__device__ static |
|
|
|
|
void quark_blake512_compress( uint64_t *h, const uint64_t *block, const uint8_t ((*sigma)[16]), const uint64_t *u512, const int bits ) |
|
|
|
|
void quark_blake512_compress( uint64_t *h, const uint64_t *block, const uint8_t ((*sigma)[16]), const uint64_t *u512, const int T0) |
|
|
|
|
{ |
|
|
|
|
uint64_t v[16], m[16], i; |
|
|
|
|
|
|
|
|
|
#pragma unroll 16 |
|
|
|
|
for( i = 0; i < 16; ++i ) { |
|
|
|
|
m[i] = cuda_swab64(block[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for( i = 0; i < 8; ++i ) v[i] = h[i]; |
|
|
|
|
|
|
|
|
|
v[ 8] = u512[0]; |
|
|
|
|
v[ 9] = u512[1]; |
|
|
|
|
v[10] = u512[2]; |
|
|
|
|
v[11] = u512[3]; |
|
|
|
|
v[12] = u512[4]; |
|
|
|
|
v[13] = u512[5]; |
|
|
|
|
v[14] = u512[6]; |
|
|
|
|
v[15] = u512[7]; |
|
|
|
|
|
|
|
|
|
v[12] ^= bits; |
|
|
|
|
v[13] ^= bits; |
|
|
|
|
|
|
|
|
|
//#pragma unroll 16 |
|
|
|
|
for( i = 0; i < 16; ++i ) |
|
|
|
|
{ |
|
|
|
|
/* column step */ |
|
|
|
|
G( 0, 4, 8, 12, 0 ); |
|
|
|
|
G( 1, 5, 9, 13, 2 ); |
|
|
|
|
G( 2, 6, 10, 14, 4 ); |
|
|
|
|
G( 3, 7, 11, 15, 6 ); |
|
|
|
|
/* diagonal step */ |
|
|
|
|
G( 0, 5, 10, 15, 8 ); |
|
|
|
|
G( 1, 6, 11, 12, 10 ); |
|
|
|
|
G( 2, 7, 8, 13, 12 ); |
|
|
|
|
G( 3, 4, 9, 14, 14 ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#pragma unroll 16 |
|
|
|
|
for( i = 0; i < 16; ++i ) h[i % 8] ^= v[i]; |
|
|
|
|
#pragma unroll 16 |
|
|
|
|
for( i = 0; i < 16; i++) { |
|
|
|
|
m[i] = cuda_swab64(block[i]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i = 0; i < 8; i++) |
|
|
|
|
v[i] = h[i]; |
|
|
|
|
|
|
|
|
|
v[ 8] = u512[0]; |
|
|
|
|
v[ 9] = u512[1]; |
|
|
|
|
v[10] = u512[2]; |
|
|
|
|
v[11] = u512[3]; |
|
|
|
|
v[12] = u512[4] ^ T0; |
|
|
|
|
v[13] = u512[5] ^ T0; |
|
|
|
|
v[14] = u512[6]; |
|
|
|
|
v[15] = u512[7]; |
|
|
|
|
|
|
|
|
|
//#pragma unroll 16 |
|
|
|
|
for( i = 0; i < 16; ++i ) |
|
|
|
|
{ |
|
|
|
|
/* column step */ |
|
|
|
|
G( 0, 4, 8, 12, 0 ); |
|
|
|
|
G( 1, 5, 9, 13, 2 ); |
|
|
|
|
G( 2, 6, 10, 14, 4 ); |
|
|
|
|
G( 3, 7, 11, 15, 6 ); |
|
|
|
|
/* diagonal step */ |
|
|
|
|
G( 0, 5, 10, 15, 8 ); |
|
|
|
|
G( 1, 6, 11, 12, 10 ); |
|
|
|
|
G( 2, 7, 8, 13, 12 ); |
|
|
|
|
G( 3, 4, 9, 14, 14 ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#pragma unroll 16 |
|
|
|
|
for( i = 0; i < 16; ++i ) |
|
|
|
|
h[i % 8] ^= v[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__device__ __constant__ |
|
|
|
@ -114,7 +115,8 @@ static const uint64_t d_constMem[8] = {
@@ -114,7 +115,8 @@ static const uint64_t d_constMem[8] = {
|
|
|
|
|
0x510e527fade682d1ULL, |
|
|
|
|
0x9b05688c2b3e6c1fULL, |
|
|
|
|
0x1f83d9abfb41bd6bULL, |
|
|
|
|
0x5be0cd19137e2179ULL }; |
|
|
|
|
0x5be0cd19137e2179ULL |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
// Hash-Padding |
|
|
|
|
__device__ __constant__ |
|
|
|
@ -126,7 +128,8 @@ static const uint64_t d_constHashPadding[8] = {
@@ -126,7 +128,8 @@ static const uint64_t d_constHashPadding[8] = {
|
|
|
|
|
0, |
|
|
|
|
0x0100000000000000ull, |
|
|
|
|
0, |
|
|
|
|
0x0002000000000000ull }; |
|
|
|
|
0x0002000000000000ull |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
__global__ __launch_bounds__(256, 4) |
|
|
|
|
void quark_blake512_gpu_hash_64(int threads, uint32_t startNounce, uint32_t *g_nonceVector, uint64_t *g_hash) |
|
|
|
@ -145,48 +148,42 @@ void quark_blake512_gpu_hash_64(int threads, uint32_t startNounce, uint32_t *g_n
@@ -145,48 +148,42 @@ void quark_blake512_gpu_hash_64(int threads, uint32_t startNounce, uint32_t *g_n
|
|
|
|
|
if (thread < threads) |
|
|
|
|
#endif |
|
|
|
|
{ |
|
|
|
|
uint8_t i; |
|
|
|
|
// bestimme den aktuellen Zähler |
|
|
|
|
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
|
|
|
|
|
|
|
|
|
int hashPosition = nounce - startNounce; |
|
|
|
|
uint64_t *inpHash = &g_hash[hashPosition<<3]; // hashPosition * 8 |
|
|
|
|
|
|
|
|
|
// 128 Byte für die Message |
|
|
|
|
// 128 Bytes |
|
|
|
|
uint64_t buf[16]; |
|
|
|
|
|
|
|
|
|
// State vorbereiten |
|
|
|
|
// State |
|
|
|
|
uint64_t h[8]; |
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i=0;i<8;i++) |
|
|
|
|
for (int i=0;i<8;i++) |
|
|
|
|
h[i] = d_constMem[i]; |
|
|
|
|
|
|
|
|
|
// Message für die erste Runde in Register holen |
|
|
|
|
// Message for first round |
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i=0; i < 8; ++i) |
|
|
|
|
for (int i=0; i < 8; ++i) |
|
|
|
|
buf[i] = inpHash[i]; |
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i=0; i < 8; i++) |
|
|
|
|
for (int i=0; i < 8; i++) |
|
|
|
|
buf[i+8] = d_constHashPadding[i]; |
|
|
|
|
|
|
|
|
|
// die einzige Hashing-Runde |
|
|
|
|
// Ending round |
|
|
|
|
quark_blake512_compress( h, buf, c_sigma, c_u512, 512 ); |
|
|
|
|
|
|
|
|
|
#if __CUDA_ARCH__ >= 130 |
|
|
|
|
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verfügbar sind |
|
|
|
|
#if __CUDA_ARCH__ <= 350 |
|
|
|
|
uint32_t *outHash = (uint32_t*)&g_hash[8 * hashPosition]; |
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i=0; i < 8; ++i) { |
|
|
|
|
for (int i=0; i < 8; i++) { |
|
|
|
|
outHash[2*i+0] = cuda_swab32( _HIWORD(h[i]) ); |
|
|
|
|
outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) ); |
|
|
|
|
} |
|
|
|
|
#else |
|
|
|
|
// in dieser Version passieren auch ein paar 64 Bit Shifts |
|
|
|
|
uint64_t *outHash = &g_hash[8 * hashPosition]; |
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i=0; i < 8; ++i) |
|
|
|
|
{ |
|
|
|
|
for (int i=0; i < 8; i++) { |
|
|
|
|
outHash[i] = cuda_swab64(h[i]); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
@ -198,45 +195,38 @@ __global__ void quark_blake512_gpu_hash_80(int threads, uint32_t startNounce, vo
@@ -198,45 +195,38 @@ __global__ void quark_blake512_gpu_hash_80(int threads, uint32_t startNounce, vo
|
|
|
|
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
|
|
|
|
if (thread < threads) |
|
|
|
|
{ |
|
|
|
|
// State vorbereiten |
|
|
|
|
uint64_t h[8]; |
|
|
|
|
// 128 Byte für die Message |
|
|
|
|
uint64_t buf[16]; |
|
|
|
|
uint8_t i; |
|
|
|
|
// bestimme den aktuellen Zähler |
|
|
|
|
uint32_t nounce = startNounce + thread; |
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for(i=0;i<8;i++) |
|
|
|
|
for(int i=0; i<8; i++) |
|
|
|
|
h[i] = d_constMem[i]; |
|
|
|
|
|
|
|
|
|
// Message für die erste Runde in Register holen |
|
|
|
|
#pragma unroll 16 |
|
|
|
|
for (i=0; i < 16; ++i) buf[i] = c_PaddedMessage80[i]; |
|
|
|
|
for (int i=0; i < 16; ++i) |
|
|
|
|
buf[i] = c_PaddedMessage80[i]; |
|
|
|
|
|
|
|
|
|
// die Nounce durch die thread-spezifische ersetzen |
|
|
|
|
buf[9] = REPLACE_HIWORD(buf[9], cuda_swab32(nounce)); |
|
|
|
|
// The test Nonce |
|
|
|
|
((uint32_t*)buf)[19] = cuda_swab32(nounce); |
|
|
|
|
|
|
|
|
|
// die einzige Hashing-Runde |
|
|
|
|
quark_blake512_compress( h, buf, c_sigma, c_u512, 640 ); |
|
|
|
|
|
|
|
|
|
// Hash rauslassen |
|
|
|
|
#if __CUDA_ARCH__ >= 130 |
|
|
|
|
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verfügbar sind |
|
|
|
|
#if __CUDA_ARCH__ <= 350 |
|
|
|
|
uint32_t *outHash = (uint32_t *)outputHash + 16 * thread; |
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i=0; i < 8; ++i) { |
|
|
|
|
outHash[2*i+0] = cuda_swab32( _HIWORD(h[i]) ); |
|
|
|
|
for (uint32_t i=0; i < 8; i++) { |
|
|
|
|
outHash[2*i] = cuda_swab32( _HIWORD(h[i]) ); |
|
|
|
|
outHash[2*i+1] = cuda_swab32( _LOWORD(h[i]) ); |
|
|
|
|
} |
|
|
|
|
#else |
|
|
|
|
// in dieser Version passieren auch ein paar 64 Bit Shifts |
|
|
|
|
uint64_t *outHash = (uint64_t *)outputHash + 8 * thread; |
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i=0; i < 8; ++i) { |
|
|
|
|
for (uint32_t i=0; i < 8; i++) { |
|
|
|
|
outHash[i] = cuda_swab64( h[i] ); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|