@ -47,10 +47,6 @@ extern int device_map[8];
__constant__
__constant__
static uint32_t __align__(32) c_data[20];
static uint32_t __align__(32) c_data[20];
// only store the 2 high uint32 of the target hash
__constant__ static uint64_t c_Target;
__constant__ static int8_t c_BlakeRounds;
/* 8 adapters max (-t threads) */
/* 8 adapters max (-t threads) */
static uint32_t *d_resNonce[8];
static uint32_t *d_resNonce[8];
static uint32_t *h_resNonce[8];
static uint32_t *h_resNonce[8];
@ -132,7 +128,7 @@ static const uint32_t __align__(32) c_Padding[16] = {
};
};
__device__ static
__device__ static
void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0)
void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, const int rounds )
{
{
uint32_t /* __align__(8) */ m[16];
uint32_t /* __align__(8) */ m[16];
uint32_t /* __align__(8) */ v[16];
uint32_t /* __align__(8) */ v[16];
@ -160,7 +156,6 @@ void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0)
v[14] = c_u256[6];
v[14] = c_u256[6];
v[15] = c_u256[7];
v[15] = c_u256[7];
int rounds = c_BlakeRounds;
for (int i = 0; i < rounds; i++) {
for (int i = 0; i < rounds; i++) {
/* column step */
/* column step */
GS(0, 4, 0x8, 0xC, 0x0);
GS(0, 4, 0x8, 0xC, 0x0);
@ -176,18 +171,19 @@ void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0)
//#pragma unroll 16
//#pragma unroll 16
for (uint32_t i = 0; i < 16; i++) {
for (uint32_t i = 0; i < 16; i++) {
uint32_t j = i % 8;
uint32_t j = i % 8U ;
h[j] ^= v[i];
h[j] ^= v[i];
}
}
}
}
__global__
__global__
void blake256_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, const int crcsum)
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint32_t *resNounce,
const uint8_t nClzTarget, const int crcsum, const int rounds)
{
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
if (thread < threads)
{
{
const uint32_t nounce = startNou nce + thread;
const uint32_t nounce = startNonce + thread;
uint32_t h[8];
uint32_t h[8];
#pragma unroll
#pragma unroll
@ -200,7 +196,7 @@ void blake256_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resN
#else
#else
if (crcsum != prevsum) {
if (crcsum != prevsum) {
prevsum = crcsum;
prevsum = crcsum;
blake256_compress(h, c_data, 512);
blake256_compress(h, c_data, 512, rounds );
#pragma unroll
#pragma unroll
for(int i=0; i<8; i++) {
for(int i=0; i<8; i++) {
cache[i] = h[i];
cache[i] = h[i];
@ -220,10 +216,16 @@ void blake256_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resN
ending[2] = c_data[18];
ending[2] = c_data[18];
ending[3] = nounce; /* our tested value */
ending[3] = nounce; /* our tested value */
blake256_compress(h, ending, 640);
blake256_compress(h, ending, 640, rounds);
// not sure why, h[7] is ok
h[6] = cuda_swab32(h[6]);
// compare count of leading zeros h[6] + h[7]
uint64_t high64 = ((uint64_t*)h)[3];
uint32_t clz = cuda_clz64(high64);
/* do not test all parts, fulltest() will do it */
if (clz >= nClzTarget)
if (((uint64_t*)h)[3] <= c_Target)
#if NBN == 2
#if NBN == 2
/* keep the smallest nounce, + extra one if found */
/* keep the smallest nounce, + extra one if found */
if (resNounce[0] > nounce) {
if (resNounce[0] > nounce) {
@ -239,7 +241,8 @@ void blake256_gpu_hash_80(uint32_t threads, uint32_t startNounce, uint32_t *resN
}
}
__host__
__host__
uint32_t blake256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, const uint32_t crcsum)
uint32_t blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint8_t clzTarget,
const uint32_t crcsum, const int8_t rounds)
{
{
const int threadsperblock = TPB;
const int threadsperblock = TPB;
uint32_t result = MAXU;
uint32_t result = MAXU;
@ -252,7 +255,7 @@ uint32_t blake256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
return result;
blake256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNou nce, d_resNonce[thr_id], crcsum);
blake256_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNonce, d_resNonce[thr_id], clzTarget, c rcsum, (int) rounds );
cudaDeviceSynchronize();
cudaDeviceSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
//cudaThreadSynchronize(); /* seems no more required */
//cudaThreadSynchronize(); /* seems no more required */
@ -264,14 +267,12 @@ uint32_t blake256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce
}
}
__host__
__host__
void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget, int8_t blakerounds )
void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget)
{
{
uint32_t data[20];
uint32_t data[20];
memcpy(data, pdata, 80);
memcpy(data, pdata, 80);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_Target, &ptarget[6], 2*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_BlakeRounds, &blakerounds, sizeof(int8_t), 0, cudaMemcpyHostToDevice));
}
}
extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
@ -280,6 +281,8 @@ extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *pt
const uint32_t first_nonce = pdata[19];
const uint32_t first_nonce = pdata[19];
static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint32_t throughput = min(TPB * 4096, max_nonce - first_nonce);
uint32_t throughput = min(TPB * 4096, max_nonce - first_nonce);
uint64_t targetHigh = ((uint64_t*)ptarget)[3];
uint32_t clzTarget = cuda_clz64(targetHigh);
uint32_t crcsum = MAXU;
uint32_t crcsum = MAXU;
int rc = 0;
int rc = 0;
@ -308,19 +311,19 @@ extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *pt
init[thr_id] = true;
init[thr_id] = true;
}
}
blake256_cpu_setBlock_80(pdata, ptarget, blakerounds );
blake256_cpu_setBlock_80(pdata, ptarget);
#if USE_CACHE
#if USE_CACHE
crcsum = crc32_u32t(pdata, 64);
crcsum = crc32_u32t(pdata, 64);
#endif
#endif
do {
do {
// GPU HASH
// GPU HASH
uint32_t foundNonce = blake256_cpu_hash_80(thr_id, throughput, pdata[19], crcsum);
uint32_t foundNonce = blake256_cpu_hash_80(thr_id, throughput, pdata[19], (uint8_t) clzTarget, crcsum, blakerounds );
if (foundNonce != MAXU)
if (foundNonce != MAXU)
{
{
uint32_t endiandata[20];
uint32_t endiandata[20];
uint32_t vhashcpu[8];
uint32_t vhashcpu[8];
uint32_t Htarg = ptarget[7 ];
uint32_t Htarg = ptarget[6 ];
for (int k=0; k < 19; k++)
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
be32enc(&endiandata[k], pdata[k]);
@ -329,7 +332,7 @@ extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *pt
blake256hash(vhashcpu, endiandata, blakerounds);
blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget) )
if (vhashcpu[6] <= Htarg || cuda_swab32(vhashcpu[6]) <= Htarg /*&& fulltest(vhashcpu, ptarget)*/ )
{
{
pdata[19] = foundNonce;
pdata[19] = foundNonce;
rc = 1;
rc = 1;
@ -338,7 +341,7 @@ extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *pt
// Rare but possible if the throughput is big
// Rare but possible if the throughput is big
be32enc(&endiandata[19], extra_results[0]);
be32enc(&endiandata[19], extra_results[0]);
blake256hash(vhashcpu, endiandata, blakerounds);
blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget) ) {
if (vhashcpu[6] <= Htarg /* && fulltest(vhashcpu, ptarget) */ ) {
applog(LOG_NOTICE, "GPU found more than one result " CL_GRN "yippee!");
applog(LOG_NOTICE, "GPU found more than one result " CL_GRN "yippee!");
rc = 2;
rc = 2;
} else {
} else {
@ -346,9 +349,13 @@ extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *pt
}
}
}
}
//applog_hash((uint8_t*)ptarget);
//applog_compare_hash((uint8_t*)vhashcpu,(uint8_t*)ptarget);
goto exit_scan;
goto exit_scan;
}
}
else if (opt_debug) {
else if (opt_debug) {
applog_hash((uint8_t*)ptarget);
applog_compare_hash((uint8_t*)vhashcpu,(uint8_t*)ptarget);
applog(LOG_DEBUG, "GPU #%d: result for nounce %08x does not validate on CPU!", thr_id, foundNonce);
applog(LOG_DEBUG, "GPU #%d: result for nounce %08x does not validate on CPU!", thr_id, foundNonce);
}
}
}
}