Browse Source

decred: nicehash/alexis improvement

2upstream
Tanguy Pruvot 8 years ago
parent
commit
7e490693e0
  1. 628
      Algo256/decred.cu

628
Algo256/decred.cu

@ -2,13 +2,11 @@ @@ -2,13 +2,11 @@
* Blake-256 Decred 180-Bytes input Cuda Kernel (Tested on SM 5/5.2)
*
* Tanguy Pruvot - Feb 2016
*
* Revised for optimisation by pallas @ bitcointalk - Apr 2016
* Alexis Provos - Mar 2016
*/
#include <stdint.h>
#include <memory.h>
#include <miner.h>
extern "C" {
@ -16,9 +14,7 @@ extern "C" { @@ -16,9 +14,7 @@ extern "C" {
}
/* threads per block */
#define TPB 512
/* nonces per round */
#define NPR 128
#define TPB 640
/* hash by cpu with blake 256 */
extern "C" void decred_hash(void *output, const void *input)
@ -38,253 +34,145 @@ extern "C" void decred_hash(void *output, const void *input) @@ -38,253 +34,145 @@ extern "C" void decred_hash(void *output, const void *input)
#define __byte_perm(x, y, b) x
#endif
__constant__ uint32_t _ALIGN(4) d_data[24];
__constant__ uint32_t _ALIGN(16) c_data[32];
__constant__ uint32_t _ALIGN(16) c_h[ 2];
__constant__ uint32_t _ALIGN(16) c_xors[215];
/* 16 adapters max */
static uint32_t *d_resNonce[MAX_GPUS];
static uint32_t *h_resNonce[MAX_GPUS];
/* max count of found nonces in one call */
#define NBN 2
#if NBN > 1
static uint32_t extra_results[NBN] = { UINT32_MAX };
#endif
/* ############################################################################################################################### */
#define GSPREC(a,b,c,d,x,y) { \
v[a] += (m[x] ^ c_u256[y]) + v[b]; \
/* macro bodies */
#define pxorGS(a,b,c,d) { \
v[a]+= c_xors[i++] + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a], 0, 0x1032); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
v[a] += (m[y] ^ c_u256[x]) + v[b]; \
v[c]+= v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 12); \
v[a]+= c_xors[i++] + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a], 0, 0x0321); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
v[c]+= v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 7); \
}
#define GSPREC4(a0,b0,c0,d0,x0,y0,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2,a3,b3,c3,d3,x3,y3) { \
v[a0] += (m[x0] ^ c_u256[y0]) + v[b0]; \
v[a1] += (m[x1] ^ c_u256[y1]) + v[b1]; \
v[a2] += (m[x2] ^ c_u256[y2]) + v[b2]; \
v[a3] += (m[x3] ^ c_u256[y3]) + v[b3]; \
v[d0] = __byte_perm(v[d0] ^ v[a0], 0, 0x1032); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x1032); \
v[c0] += v[d0]; \
v[c1] += v[d1]; \
v[c2] += v[d2]; \
v[c3] += v[d3]; \
v[b0] = SPH_ROTR32(v[b0] ^ v[c0], 12); \
v[b1] = SPH_ROTR32(v[b1] ^ v[c1], 12); \
v[b2] = SPH_ROTR32(v[b2] ^ v[c2], 12); \
v[b3] = SPH_ROTR32(v[b3] ^ v[c3], 12); \
v[a0] += (m[y0] ^ c_u256[x0]) + v[b0]; \
v[a1] += (m[y1] ^ c_u256[x1]) + v[b1]; \
v[a2] += (m[y2] ^ c_u256[x2]) + v[b2]; \
v[a3] += (m[y3] ^ c_u256[x3]) + v[b3]; \
v[d0] = __byte_perm(v[d0] ^ v[a0], 0, 0x0321); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x0321); \
v[c0] += v[d0]; \
v[c1] += v[d1]; \
v[c2] += v[d2]; \
v[c3] += v[d3]; \
v[b0] = SPH_ROTR32(v[b0] ^ v[c0], 7); \
v[b1] = SPH_ROTR32(v[b1] ^ v[c1], 7); \
v[b2] = SPH_ROTR32(v[b2] ^ v[c2], 7); \
v[b3] = SPH_ROTR32(v[b3] ^ v[c3], 7); \
#define pxorGS2(a,b,c,d,a1,b1,c1,d1) {\
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
static const __constant__ uint32_t c_u256[16] = {
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344,
0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C,
0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
};
__device__ __forceinline__
uint32_t blake256_compress_14(uint32_t *m, uint32_t *v_init, uint32_t d_data6, uint32_t d_data7)
{
uint32_t v[16];
#pragma unroll
for (uint32_t i = 0; i < 16; i++) v[i] = v_init[i];
// these two are not modified:
v[ 9] = 0x85A308D3;
v[13] = 0x299F31D0 ^ (180U*8U);
// round 1 with nonce
GSPREC(1, 5, 0x9, 0xD, 2, 3);
GSPREC(0, 5, 0xA, 0xF, 8, 9);
GSPREC(1, 6, 0xB, 0xC, 10, 11);
GSPREC(2, 7, 0x8, 0xD, 12, 13);
GSPREC(3, 4, 0x9, 0xE, 14, 15);
// round 2
GSPREC4(0, 4, 0x8, 0xC, 14, 10, 1, 5, 0x9, 0xD, 4, 8, 2, 6, 0xA, 0xE, 9, 15, 3, 7, 0xB, 0xF, 13, 6);
GSPREC4(0, 5, 0xA, 0xF, 1, 12, 1, 6, 0xB, 0xC, 0, 2, 2, 7, 0x8, 0xD, 11, 7, 3, 4, 0x9, 0xE, 5, 3);
// round 3
GSPREC4(0, 4, 0x8, 0xC, 11, 8, 1, 5, 0x9, 0xD, 12, 0, 2, 6, 0xA, 0xE, 5, 2, 3, 7, 0xB, 0xF, 15, 13);
GSPREC4(0, 5, 0xA, 0xF, 10, 14, 1, 6, 0xB, 0xC, 3, 6, 2, 7, 0x8, 0xD, 7, 1, 3, 4, 0x9, 0xE, 9, 4);
// round 4
GSPREC4(0, 4, 0x8, 0xC, 7, 9, 1, 5, 0x9, 0xD, 3, 1, 2, 6, 0xA, 0xE, 13, 12, 3, 7, 0xB, 0xF, 11, 14);
GSPREC4(0, 5, 0xA, 0xF, 2, 6, 1, 6, 0xB, 0xC, 5, 10, 2, 7, 0x8, 0xD, 4, 0, 3, 4, 0x9, 0xE, 15, 8);
// round 5
GSPREC4(0, 4, 0x8, 0xC, 9, 0, 1, 5, 0x9, 0xD, 5, 7, 2, 6, 0xA, 0xE, 2, 4, 3, 7, 0xB, 0xF, 10, 15);
GSPREC4(0, 5, 0xA, 0xF, 14, 1, 1, 6, 0xB, 0xC, 11, 12, 2, 7, 0x8, 0xD, 6, 8, 3, 4, 0x9, 0xE, 3, 13);
// round 6
GSPREC4(0, 4, 0x8, 0xC, 2, 12, 1, 5, 0x9, 0xD, 6, 10, 2, 6, 0xA, 0xE, 0, 11, 3, 7, 0xB, 0xF, 8, 3);
GSPREC4(0, 5, 0xA, 0xF, 4, 13, 1, 6, 0xB, 0xC, 7, 5, 2, 7, 0x8, 0xD, 15,14, 3, 4, 0x9, 0xE, 1, 9);
// round 7
GSPREC4(0, 4, 0x8, 0xC, 12, 5, 1, 5, 0x9, 0xD, 1, 15, 2, 6, 0xA, 0xE, 14,13, 3, 7, 0xB, 0xF, 4, 10);
GSPREC4(0, 5, 0xA, 0xF, 0, 7, 1, 6, 0xB, 0xC, 6, 3, 2, 7, 0x8, 0xD, 9, 2, 3, 4, 0x9, 0xE, 8, 11);
#ifdef FULL_4WAY
// round 8
GSPREC4(0, 4, 0x8, 0xC, 13,11, 1, 5, 0x9, 0xD, 7, 14, 2, 6, 0xA, 0xE, 12, 1, 3, 7, 0xB, 0xF, 3, 9);
GSPREC4(0, 5, 0xA, 0xF, 5, 0, 1, 6, 0xB, 0xC, 15, 4, 2, 7, 0x8, 0xD, 8, 6, 3, 4, 0x9, 0xE, 2, 10);
// round 9
GSPREC4(0, 4, 0x8, 0xC, 6, 15, 1, 5, 0x9, 0xD, 14, 9, 2, 6, 0xA, 0xE, 11, 3, 3, 7, 0xB, 0xF, 0, 8);
GSPREC4(0, 5, 0xA, 0xF, 12, 2, 1, 6, 0xB, 0xC, 13, 7, 2, 7, 0x8, 0xD, 1, 4, 3, 4, 0x9, 0xE, 10, 5);
// round 10
GSPREC4(0, 4, 0x8, 0xC, 10, 2, 1, 5, 0x9, 0xD, 8, 4, 2, 6, 0xA, 0xE, 7, 6, 3, 7, 0xB, 0xF, 1, 5);
GSPREC4(0, 5, 0xA, 0xF, 15,11, 1, 6, 0xB, 0xC, 9, 14, 2, 7, 0x8, 0xD, 3, 12, 3, 4, 0x9, 0xE, 13, 0);
// round 11
GSPREC4(0, 4, 0x8, 0xC, 0, 1, 1, 5, 0x9, 0xD, 2, 3, 2, 6, 0xA, 0xE, 4, 5, 3, 7, 0xB, 0xF, 6, 7);
GSPREC4(0, 5, 0xA, 0xF, 8, 9, 1, 6, 0xB, 0xC, 10,11, 2, 7, 0x8, 0xD, 12,13, 3, 4, 0x9, 0xE, 14,15);
// round 12
GSPREC4(0, 4, 0x8, 0xC, 14,10, 1, 5, 0x9, 0xD, 4, 8, 2, 6, 0xA, 0xE, 9, 15, 3, 7, 0xB, 0xF, 13, 6);
GSPREC4(0, 5, 0xA, 0xF, 1, 12, 1, 6, 0xB, 0xC, 0, 2, 2, 7, 0x8, 0xD, 11, 7, 3, 4, 0x9, 0xE, 5, 3);
// round 13
GSPREC4(0, 4, 0x8, 0xC, 11, 8, 1, 5, 0x9, 0xD, 12, 0, 2, 6, 0xA, 0xE, 5, 2, 3, 7, 0xB, 0xF, 15,13);
GSPREC4(0, 5, 0xA, 0xF, 10,14, 1, 6, 0xB, 0xC, 3, 6, 2, 7, 0x8, 0xD, 7, 1, 3, 4, 0x9, 0xE, 9, 4);
#else
// round 8
GSPREC(0, 4, 0x8, 0xC, 13,11);
GSPREC(1, 5, 0x9, 0xD, 7, 14);
GSPREC(2, 6, 0xA, 0xE, 12, 1);
GSPREC(3, 7, 0xB, 0xF, 3, 9);
GSPREC(0, 5, 0xA, 0xF, 5, 0);
GSPREC(1, 6, 0xB, 0xC, 15, 4);
GSPREC(2, 7, 0x8, 0xD, 8, 6);
GSPREC(3, 4, 0x9, 0xE, 2, 10);
// round 9
GSPREC(0, 4, 0x8, 0xC, 6, 15);
GSPREC(1, 5, 0x9, 0xD, 14, 9);
GSPREC(2, 6, 0xA, 0xE, 11, 3);
GSPREC(3, 7, 0xB, 0xF, 0, 8);
GSPREC(0, 5, 0xA, 0xF, 12, 2);
GSPREC(1, 6, 0xB, 0xC, 13, 7);
GSPREC(2, 7, 0x8, 0xD, 1, 4);
GSPREC(3, 4, 0x9, 0xE, 10, 5);
// round 10
GSPREC(0, 4, 0x8, 0xC, 10, 2);
GSPREC(1, 5, 0x9, 0xD, 8, 4);
GSPREC(2, 6, 0xA, 0xE, 7, 6);
GSPREC(3, 7, 0xB, 0xF, 1, 5);
GSPREC(0, 5, 0xA, 0xF, 15,11);
GSPREC(1, 6, 0xB, 0xC, 9, 14);
GSPREC(2, 7, 0x8, 0xD, 3, 12);
GSPREC(3, 4, 0x9, 0xE, 13, 0);
// round 11
GSPREC(0, 4, 0x8, 0xC, 0, 1);
GSPREC(1, 5, 0x9, 0xD, 2, 3);
GSPREC(2, 6, 0xA, 0xE, 4, 5);
GSPREC(3, 7, 0xB, 0xF, 6, 7);
GSPREC(0, 5, 0xA, 0xF, 8, 9);
GSPREC(1, 6, 0xB, 0xC, 10,11);
GSPREC(2, 7, 0x8, 0xD, 12,13);
GSPREC(3, 4, 0x9, 0xE, 14,15);
// round 12
GSPREC(0, 4, 0x8, 0xC, 14,10);
GSPREC(1, 5, 0x9, 0xD, 4, 8);
GSPREC(2, 6, 0xA, 0xE, 9, 15);
GSPREC(3, 7, 0xB, 0xF, 13, 6);
GSPREC(0, 5, 0xA, 0xF, 1, 12);
GSPREC(1, 6, 0xB, 0xC, 0, 2);
GSPREC(2, 7, 0x8, 0xD, 11, 7);
GSPREC(3, 4, 0x9, 0xE, 5, 3);
// round 13
GSPREC(0, 4, 0x8, 0xC, 11, 8);
GSPREC(1, 5, 0x9, 0xD, 12, 0);
GSPREC(2, 6, 0xA, 0xE, 5, 2);
GSPREC(3, 7, 0xB, 0xF, 15,13);
GSPREC(0, 5, 0xA, 0xF, 10,14);
GSPREC(1, 6, 0xB, 0xC, 3, 6);
GSPREC(2, 7, 0x8, 0xD, 7, 1);
GSPREC(3, 4, 0x9, 0xE, 9, 4);
#endif
// round 14
GSPREC(0, 4, 0x8, 0xC, 7, 9);
GSPREC(1, 5, 0x9, 0xD, 3, 1);
GSPREC(2, 6, 0xA, 0xE, 13,12);
GSPREC(3, 7, 0xB, 0xF, 11,14);
GSPREC(0, 5, 0xA, 0xF, 2, 6);
GSPREC(2, 7, 0x8, 0xD, 4, 0);
if ((d_data7 ^ v[7] ^ v[15]) == 0) {
GSPREC(1, 6, 0xB, 0xC, 5, 10);
GSPREC(3, 4, 0x9, 0xE, 15, 8);
return (d_data6 ^ v[6] ^ v[14]);
}
return UINT32_MAX;
#define pxory1GS2(a,b,c,d,a1,b1,c1,d1) { \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= (c_xors[i++]^nonce) + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxory0GS2(a,b,c,d,a1,b1,c1,d1) { \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= (c_xors[i++]^nonce) + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxorx1GS2(a,b,c,d,a1,b1,c1,d1) { \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= (c_xors[i++]^nonce) + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxorx0GS2(a,b,c,d,a1,b1,c1,d1) { \
v[ a]+= (c_xors[i++]^nonce) + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
/* ############################################################################################################################### */
// ------ Close: Last 52/64 bytes ------
__global__
void blake256_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget)
__global__ __launch_bounds__(TPB,1)
void decred_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint32_t highTarget)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
// if (thread < threads)
{
const uint32_t nonce = startNonce + thread * NPR;
uint32_t m[16], v[16], temp;
const uint32_t d_data6 = d_data[6], d_data7 = d_data[7];
const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
if (thread < threads)
{
uint32_t v[16];
#pragma unroll
for(int i = 0; i < 8; i++) v[i] = d_data[i];
for(int i=0;i<16;i+=4){
*(uint4*)&v[i] = *(uint4*)&c_data[ i];
}
#pragma unroll
for (uint32_t i = 0; i < 16; i++) m[i] = d_data[i+8U];
v[ 8] = 0x243F6A88;
v[ 9] = 0x85A308D3;
v[10] = 0x13198A2E;
v[11] = 0x03707344;
v[12] = 0xA4093822 ^ (180U*8U);
v[13] = 0x299F31D0 ^ (180U*8U);
v[14] = 0x082EFA98;
v[15] = 0xEC4E6C89;
// round 1 without nonce
GSPREC(0, 4, 0x8, 0xC, 0, 1);
GSPREC(2, 6, 0xA, 0xE, 4, 5);
GSPREC(3, 7, 0xB, 0xF, 6, 7);
for (m[3] = nonce; m[3] < nonce + NPR; m[3]++) {
temp = blake256_compress_14(m, v, d_data6, d_data7);
if (temp != UINT32_MAX && cuda_swab32(temp) <= highTarget) {
#if NBN == 2
if (resNonce[0] != UINT32_MAX) resNonce[1] = m[3];
else resNonce[0] = m[3];
#else
resNonce[0] = m[3];
#endif
// from alexis78:
// return statement allows CUDA7.5 to :
// 1. Store the values fetched from constant memory in registers.
// 2. Perform more precomputations on the outside of the for loop.
// 3. Stop the continuous fetches from the constant memory while iterating
const uint32_t nonce = startNonce + thread;
int i=0;
v[ 1]+= (nonce ^ 0x13198A2E);
v[13] = __byte_perm(v[13] ^ v[1], 0, 0x0321);
v[ 9]+= v[13];
v[ 5] = ROTR32(v[5] ^ v[9], 7);
v[ 1]+= c_xors[i++];// + v[ 6];
v[ 0]+= v[5];
v[12] = __byte_perm(v[12] ^ v[ 1], 0, 0x1032); v[15] = __byte_perm(v[15] ^ v[ 0], 0, 0x1032);
v[11]+= v[12]; v[10]+= v[15];
v[ 6] = ROTR32(v[ 6] ^ v[11], 12); v[ 5] = ROTR32(v[5] ^ v[10], 12);
v[ 1]+= c_xors[i++] + v[ 6]; v[ 0]+= c_xors[i++] + v[ 5];
v[12] = __byte_perm(v[12] ^ v[ 1], 0, 0x0321); v[15] = __byte_perm(v[15] ^ v[ 0], 0, 0x0321);
v[11]+= v[12]; v[10]+= v[15];
v[ 6] = ROTR32(v[ 6] ^ v[11], 7); v[ 5] = ROTR32(v[ 5] ^ v[10], 7);
pxorGS2( 2, 7, 8,13, 3, 4, 9,14);
// { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxory1GS2( 2, 7, 8,13, 3, 4, 9,14);
// { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxorx1GS2( 0, 5,10,15, 1, 6,11,12);pxorGS2( 2, 7, 8,13, 3, 4, 9,14);
// { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
pxorx1GS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxorGS2( 2, 7, 8,13, 3, 4, 9,14);
// { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxorx1GS2( 2, 7, 8,13, 3, 4, 9,14);
// { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxory1GS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxorGS2( 2, 7, 8,13, 3, 4, 9,14);
// { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxory1GS2( 0, 5,10,15, 1, 6,11,12);pxorGS2( 2, 7, 8,13, 3, 4, 9,14);
// { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxorx1GS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxorGS2( 2, 7, 8,13, 3, 4, 9,14);
//{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxory0GS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxorGS2( 2, 7, 8,13, 3, 4, 9,14);
//{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxorx0GS2( 2, 7, 8,13, 3, 4, 9,14);
//{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
pxory1GS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxorGS2( 2, 7, 8,13, 3, 4, 9,14);
// { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxory1GS2( 2, 7, 8,13, 3, 4, 9,14);
// { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
pxorGS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxorx1GS2( 0, 5,10,15, 1, 6,11,12);pxorGS2( 2, 7, 8,13, 3, 4, 9,14);
//{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }
pxorx1GS2( 0, 4, 8,12, 1, 5, 9,13);pxorGS2( 2, 6,10,14, 3, 7,11,15);pxorGS2( 0, 5,10,15, 1, 6,11,12);pxorGS( 2, 7, 8,13);
if ((c_h[1]^v[15]) == v[7]){
v[3] += c_xors[i++] + v[4];
v[14] = __byte_perm(v[14] ^ v[3], 0, 0x1032);
v[9] += v[14];
v[4] = ROTR32(v[4] ^ v[9], 12);
v[3] += c_xors[i++] + v[4];
v[14] = __byte_perm(v[14] ^ v[3], 0, 0x0321);
if(cuda_swab32((c_h[0]^v[6]^v[14])) <= highTarget) {
atomicMin(&resNonce[0], nonce);
return;
}
}
@ -292,60 +180,158 @@ void blake256_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, @@ -292,60 +180,158 @@ void blake256_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce,
}
__host__
static uint32_t decred_cpu_hash_nonce(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget)
{
uint32_t result = UINT32_MAX;
const uint32_t real_threads = threads / NPR;
dim3 grid((real_threads + TPB-1)/TPB);
dim3 block(TPB);
void decred_cpu_setBlock_52(const uint32_t *input){
/*
Precompute everything possible and pass it on constant memory
*/
const sph_u32 _ALIGN(64) z[16] = {
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344), SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
};
int i=0;
sph_u32 _ALIGN(64) preXOR[215];
sph_u32 _ALIGN(64) data[16];
sph_u32 _ALIGN(64) m[16];
sph_u32 _ALIGN(64) h[ 2];
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_nonce <<<grid, block>>> (real_threads, startNonce, d_resNonce[thr_id], highTarget);
cudaThreadSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
result = h_resNonce[thr_id][0];
#if NBN > 1
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
#endif
}
return result;
}
__host__
static void decred_midstate_128(uint32_t *output, const uint32_t *input)
{
sph_blake256_context ctx;
sph_blake256_set_rounds(14);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 128);
memcpy(output, (void*)ctx.H, 32);
}
__host__
void decred_cpu_setBlock_52(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget)
{
uint32_t _ALIGN(64) data[24];
memcpy(data, midstate, 32);
data[ 0] = ctx.H[0]; data[ 1] = ctx.H[1];
data[ 2] = ctx.H[2]; data[ 3] = ctx.H[3];
data[ 4] = ctx.H[4]; data[ 5] = ctx.H[5];
data[ 8] = ctx.H[6]; data[12] = swab32(input[35]);
data[13] = ctx.H[7];
// pre swab32
for (int i=0; i<13; i++)
data[8+i] = swab32(penddata[i]);
data[21] = 0x80000001;
data[22] = 0;
data[23] = 0x000005a0;
CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 64, 0, cudaMemcpyHostToDevice));
m[ 0] = swab32(input[32]); m[ 1] = swab32(input[33]);
m[ 2] = swab32(input[34]); m[ 3] = 0;
m[ 4] = swab32(input[36]); m[ 5] = swab32(input[37]);
m[ 6] = swab32(input[38]); m[ 7] = swab32(input[39]);
m[ 8] = swab32(input[40]); m[ 9] = swab32(input[41]);
m[10] = swab32(input[42]); m[11] = swab32(input[43]);
m[12] = swab32(input[44]); m[13] = 0x80000001;
m[14] = 0; m[15] = 0x000005a0;
h[ 0] = data[ 8];
h[ 1] = data[13];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_h,h, 8, 0, cudaMemcpyHostToDevice));
data[ 0]+= (m[ 0] ^ z[1]) + data[ 4];
data[12] = SPH_ROTR32(z[4] ^ SPH_C32(0x5A0) ^ data[ 0], 16);
data[ 8] = z[0]+data[12];
data[ 4] = SPH_ROTR32(data[ 4] ^ data[ 8], 12);
data[ 0]+= (m[ 1] ^ z[0]) + data[ 4];
data[12] = SPH_ROTR32(data[12] ^ data[ 0],8);
data[ 8]+= data[12];
data[ 4] = SPH_ROTR32(data[ 4] ^ data[ 8], 7);
data[ 1]+= (m[ 2] ^ z[3]) + data[ 5];
data[13] = SPH_ROTR32((z[5] ^ SPH_C32(0x5A0)) ^ data[ 1], 16);
data[ 9] = z[1]+data[13];
data[ 5] = SPH_ROTR32(data[ 5] ^ data[ 9], 12);
data[ 1]+= data[ 5]; //+nonce ^ ...
data[ 2]+= (m[ 4] ^ z[5]) + h[ 0];
data[14] = SPH_ROTR32(z[6] ^ data[ 2],16);
data[10] = z[2] + data[14];
data[ 6] = SPH_ROTR32(h[ 0] ^ data[10], 12);
data[ 2]+= (m[ 5] ^ z[4]) + data[ 6];
data[14] = SPH_ROTR32(data[14] ^ data[ 2], 8);
data[10]+= data[14];
data[ 6] = SPH_ROTR32(data[ 6] ^ data[10], 7);
data[ 3]+= (m[ 6] ^ z[7]) + h[ 1];
data[15] = SPH_ROTR32(z[7] ^ data[ 3],16);
data[11] = z[3] + data[15];
data[ 7] = SPH_ROTR32(h[ 1] ^ data[11], 12);
data[ 3]+= (m[ 7] ^ z[6]) + data[ 7];
data[15] = SPH_ROTR32(data[15] ^ data[ 3],8);
data[11]+= data[15];
data[ 7] = SPH_ROTR32(data[11] ^ data[ 7], 7);
data[ 0]+= m[ 8] ^ z[9];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, 64, 0, cudaMemcpyHostToDevice));
#define precalcXORGS(x,y) { \
preXOR[i++]= (m[x] ^ z[y]); \
preXOR[i++]= (m[y] ^ z[x]); \
}
#define precalcXORGS2(x,y,x1,y1){\
preXOR[i++] = (m[ x] ^ z[ y]);\
preXOR[i++] = (m[x1] ^ z[y1]);\
preXOR[i++] = (m[ y] ^ z[ x]);\
preXOR[i++] = (m[y1] ^ z[x1]);\
}
precalcXORGS(10,11);
preXOR[ 0]+=data[ 6];
preXOR[i++] = (m[9] ^ z[8]);
precalcXORGS2(12,13,14,15);
precalcXORGS2(14,10, 4, 8);
precalcXORGS2( 9,15,13, 6);
precalcXORGS2( 1,12, 0, 2);
precalcXORGS2(11, 7, 5, 3);
precalcXORGS2(11, 8,12, 0);
precalcXORGS2( 5, 2,15,13);
precalcXORGS2(10,14, 3, 6);
precalcXORGS2( 7, 1, 9, 4);
precalcXORGS2( 7, 9, 3, 1);
precalcXORGS2(13,12,11,14);
precalcXORGS2( 2, 6, 5,10);
precalcXORGS2( 4, 0,15, 8);
precalcXORGS2( 9, 0, 5, 7);
precalcXORGS2( 2, 4,10,15);
precalcXORGS2(14, 1,11,12);
precalcXORGS2( 6, 8, 3,13);
precalcXORGS2( 2,12, 6,10);
precalcXORGS2( 0,11, 8, 3);
precalcXORGS2( 4,13, 7, 5);
precalcXORGS2(15,14, 1, 9);
precalcXORGS2(12, 5, 1,15);
precalcXORGS2(14,13, 4,10);
precalcXORGS2( 0, 7, 6, 3);
precalcXORGS2( 9, 2, 8,11);
precalcXORGS2(13,11, 7,14);
precalcXORGS2(12, 1, 3, 9);
precalcXORGS2( 5, 0,15, 4);
precalcXORGS2( 8, 6, 2,10);
precalcXORGS2( 6,15,14, 9);
precalcXORGS2(11, 3, 0, 8);
precalcXORGS2(12, 2,13, 7);
precalcXORGS2( 1, 4,10, 5);
precalcXORGS2(10, 2, 8, 4);
precalcXORGS2( 7, 6, 1, 5);
precalcXORGS2(15,11, 9,14);
precalcXORGS2( 3,12,13, 0);
precalcXORGS2( 0, 1, 2, 3);
precalcXORGS2( 4, 5, 6, 7);
precalcXORGS2( 8, 9,10,11);
precalcXORGS2(12,13,14,15);
precalcXORGS2(14,10, 4, 8);
precalcXORGS2( 9,15,13, 6);
precalcXORGS2( 1,12, 0, 2);
precalcXORGS2(11, 7, 5, 3);
precalcXORGS2(11, 8,12, 0);
precalcXORGS2( 5, 2,15,13);
precalcXORGS2(10,14, 3, 6);
precalcXORGS2( 7, 1, 9, 4);
precalcXORGS2( 7, 9, 3, 1);
precalcXORGS2(13,12,11,14);
precalcXORGS2( 2, 6, 5,10);
precalcXORGS( 4, 0);
precalcXORGS(15, 8);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_xors, preXOR, 215*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
}
/* ############################################################################################################################### */
@ -357,31 +343,29 @@ static bool init[MAX_GPUS] = { 0 }; @@ -357,31 +343,29 @@ static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t _ALIGN(64) endiandata[48];
uint32_t _ALIGN(64) midstate[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t *pnonce = &pdata[DCR_NONCE_OFT32];
const uint32_t first_nonce = *pnonce;
uint64_t targetHigh = ((uint64_t*)ptarget)[3];
int dev_id = device_map[thr_id];
const uint32_t targetHigh = (opt_benchmark?0x1ULL:ptarget[6]);
const int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 29 : 25;
if (device_sm[dev_id] < 350) intensity = 22;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
const dim3 grid((throughput + TPB-1)/(TPB));
const dim3 block(TPB);
int rc = 0;
if (opt_benchmark) {
targetHigh = 0x1ULL << 32;
ptarget[6] = swab32(0xff);
}
if (!init[thr_id])
{
if (!init[thr_id]) {
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
@ -391,67 +375,38 @@ extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce @@ -391,67 +375,38 @@ extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce
CUDA_LOG_ERROR();
}
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], sizeof(uint32_t)), -1);
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], sizeof(uint32_t)), -1);
init[thr_id] = true;
}
cudaMemset(d_resNonce[thr_id], 0xff, sizeof(uint32_t));
memcpy(endiandata, pdata, 180);
decred_midstate_128(midstate, endiandata);
decred_cpu_setBlock_52(&pdata[32], midstate, ptarget);
decred_cpu_setBlock_52(endiandata);
do {
// GPU HASH
uint32_t foundNonce = decred_cpu_hash_nonce(thr_id, throughput, (*pnonce), targetHigh);
if (foundNonce != UINT32_MAX)
{
uint32_t vhashcpu[8];
uint32_t Htarg = ptarget[6];
be32enc(&endiandata[DCR_NONCE_OFT32], foundNonce);
decred_hash(vhashcpu, endiandata);
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget))
{
rc = 1;
work_set_target_ratio(work, vhashcpu);
*hashes_done = (*pnonce) - first_nonce + throughput;
work->nonces[0] = swab32(foundNonce);
#if NBN > 1
if (extra_results[0] != UINT32_MAX) {
be32enc(&endiandata[DCR_NONCE_OFT32], extra_results[0]);
decred_hash(vhashcpu, endiandata);
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) {
work->nonces[1] = swab32(extra_results[0]);
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio) {
work_set_target_ratio(work, vhashcpu);
xchg(work->nonces[1], work->nonces[0]);
}
rc = 2;
}
extra_results[0] = UINT32_MAX;
}
#endif
*pnonce = work->nonces[0];
return rc;
}
else if (opt_debug) {
applog_hash(ptarget);
applog_compare_hash(vhashcpu, ptarget);
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce);
}
decred_gpu_hash_nonce <<<grid, block>>> (throughput, (*pnonce), d_resNonce[thr_id], targetHigh);
cudaThreadSynchronize();
cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
if (h_resNonce[thr_id][0] != UINT32_MAX) {
rc = 1;
// work_set_target_ratio(work, vhashcpu);
*hashes_done = (*pnonce) - first_nonce + throughput;
work->nonces[0] = swab32(h_resNonce[thr_id][0]);
*pnonce = work->nonces[0];
return 1;
}
*pnonce += throughput;
} while (!work_restart[thr_id].restart && max_nonce > (uint64_t)throughput + (*pnonce));
} while (!work_restart[thr_id].restart && (uint64_t)max_nonce > (uint64_t)throughput + (uint64_t)(*pnonce));
*hashes_done = (*pnonce) - first_nonce;
MyStreamSynchronize(NULL, 0, device_map[thr_id]);
return rc;
}
// cleanup
extern "C" void free_decred(int thr_id)
{
@ -459,7 +414,6 @@ extern "C" void free_decred(int thr_id) @@ -459,7 +414,6 @@ extern "C" void free_decred(int thr_id)
return;
cudaDeviceSynchronize();
cudaFreeHost(h_resNonce[thr_id]);
cudaFree(d_resNonce[thr_id]);

Loading…
Cancel
Save