1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-14 08:48:04 +00:00

fedora: note about the alternative method via rpms

This commit is contained in:
Tanguy Pruvot 2017-06-15 03:48:38 +02:00
parent 037bbe3ad3
commit 79f8f71fc3

View File

@ -11,6 +11,10 @@ but some distros may have a different default location)
** How to compile on Fedora 25 ** ** How to compile on Fedora 25 **
Note: You may find an alternative method via rpms :
see https://negativo17.org/nvidia-driver/ and https://negativo17.org/repos/multimedia/
# Step 1: gcc and dependencies # Step 1: gcc and dependencies
dnf install gcc gcc-c++ autoconf automake dnf install gcc gcc-c++ autoconf automake
dnf install jansson-devel openssl-devel libcurl-devel zlib-devel dnf install jansson-devel openssl-devel libcurl-devel zlib-devel
@ -29,7 +33,7 @@ ln -s libnvidia-ml.so.1 /usr/lib64/libnvidia-ml.so
nvcc --version nvcc --version
# add the nvcc binary path to the system # add the nvcc binary path to the system
ln -s /usr/local/cuda-6.5 /usr/local/cuda ln -s /usr/local/cuda-8.0 /usr/local/cuda # (if not already made)
echo 'export PATH=$PATH:/usr/local/cuda/bin' > /etc/profile.d/cuda.sh echo 'export PATH=$PATH:/usr/local/cuda/bin' > /etc/profile.d/cuda.sh
# add the cudart library path to the system # add the cudart library path to the system
@ -40,6 +44,7 @@ ldconfig
# You need to build yourself an older GCC/G++ version, i recommend the 5.4 # You need to build yourself an older GCC/G++ version, i recommend the 5.4
# see https://gcc.gnu.org/mirrors.html # see https://gcc.gnu.org/mirrors.html
# Note: this manual method will override the default gcc, it could be better to use a custom toolchain prefix
wget ftp://ftp.lip6.fr/pub/gcc/releases/gcc-5.4.0/gcc-5.4.0.tar.bz2 wget ftp://ftp.lip6.fr/pub/gcc/releases/gcc-5.4.0/gcc-5.4.0.tar.bz2
dnf install libmpc-devel mpfr-devel gmp-devel dnf install libmpc-devel mpfr-devel gmp-devel
@ -56,6 +61,7 @@ make -j 8 && make install
** How to compile on macOS ** ** How to compile on macOS **
# Step 1: download and install CUDA Toolkit 8 or more recent # Step 1: download and install CUDA Toolkit 8 or more recent
# https://developer.nvidia.com/cuda-toolkit-archive # https://developer.nvidia.com/cuda-toolkit-archive