1
0
mirror of https://github.com/GOSTSec/ccminer synced 2025-01-09 14:28:15 +00:00

bump to revision v0.8

This commit is contained in:
Christian Buchner 2014-05-03 21:01:50 +02:00
parent 61cbdc62d0
commit 6c8eff98c0
22 changed files with 316 additions and 256 deletions

View File

@ -18,13 +18,13 @@ ccminer_SOURCES = elist.h miner.h compat.h \
compat/sys/time.h compat/getopt/getopt.h \
cpu-miner.c util.c sph/blake.c sph/groestl.c sph/jh.c sph/keccak.c sph/skein.c hefty1.c scrypt.c sha2.c \
sph/sph_blake.h sph/sph_groestl.h sph/sph_jh.h sph/sph_keccak.h sph/sph_skein.h sph/sph_types.h \
heavy.cu \
cuda_blake512.cu cuda_blake512.h \
cuda_combine.cu cuda_combine.h \
cuda_groestl512.cu cuda_groestl512.h \
cuda_hefty1.cu cuda_hefty1.h \
cuda_keccak512.cu cuda_keccak512.h \
cuda_sha256.cu cuda_sha256.h \
heavy/heavy.cu \
heavy/cuda_blake512.cu heavy/cuda_blake512.h \
heavy/cuda_combine.cu heavy/cuda_combine.h \
heavy/cuda_groestl512.cu heavy/cuda_groestl512.h \
heavy/cuda_hefty1.cu heavy/cuda_hefty1.h \
heavy/cuda_keccak512.cu heavy/cuda_keccak512.h \
heavy/cuda_sha256.cu heavy/cuda_sha256.h \
fuguecoin.cpp cuda_fugue256.cu sph/fugue.c sph/sph_fugue.h uint256.h \
groestlcoin.cpp cuda_groestlcoin.cu cuda_groestlcoin.h \
JHA/jackpotcoin.cu JHA/cuda_jha_keccak512.cu \

View File

@ -12,9 +12,8 @@ If you find this tool useful and like to support its continued
VTC donation address: VrjeFzMgvteCGarLw85KivBzmsiH9fqp4a
MAX donation address: mHrhQP9EFArechWxTFJ97s9D3jvcCvEEnt
DOGE donation address: DT9ghsGmez6ojVdEZgvaZbT2Z3TruXG6yP
PANDA donation address: PvgtxJ2ZKaudRogCXfUMLXVaWUMcKQgRed
MRC donation address: 1Lxc4JPDpQRJB8BN4YwhmSQ3Rcu8gjj2Kd
HVC donation address: HNN3PyyTMkDo4RkEjkWSGMwqia1yD8mwJN
GRS donation address: FmJKJAhvyHWPeEVeLQHefr2naqgWc9ABTM
***************************************************************
>>> Introduction <<<
@ -35,6 +34,7 @@ its command line interface and options.
-a, --algo=ALGO specify the algorithm to use
heavy use to mine Heavycoin
mjollnir use to mine Mjollnircoin
fugue256 use to mine Fuguecoin
groestl use to mine Groestlcoin
myr-gr use to mine Myriad-Groestl
@ -45,11 +45,12 @@ its command line interface and options.
Alternatively give string names of your card like
gtx780ti or gt640#2 (matching 2nd gt640 in the PC).
-f, --diff Divide difficulty by this factor (std is 1) \n\
-v, --vote Heavycoin block vote (default: 512)
-o, --url=URL URL of mining server (default: " DEF_RPC_URL ")
-O, --userpass=U:P username:password pair for mining server
-u, --user=USERNAME username for mining server
-p, --pass=PASSWORD password for mining server
-v, --vote Heavycoin block vote (default: 512)
--cert=FILE certificate for mining server using SSL
-x, --proxy=[PROTOCOL://]HOST[:PORT] connect through a proxy
-t, --threads=N number of miner threads (default: number of nVidia GPUs in your system)
@ -116,6 +117,13 @@ from your old clunkers.
>>> RELEASE HISTORY <<<
May 3rd 2014 add the MjollnirCoin hash algorithm for the upcomin
MjollnirCoin relaunch.
Add the -f (--diff) option to adjust the difficulty
e.g. for the erebor Dwarfpool myr-gr SaffronCoin pool.
Use -f 256 there.
May 1st 2014 adapt the Jackpot algorithms to changes made by the
coin developers. We keep our unique nVidia advantage
because we have a way to break up the divergence.

View File

@ -264,14 +264,15 @@ copy "$(CudaToolkitBinDir)\cudart*.dll" "$(OutDir)"</Command>
<ClInclude Include="compat\sys\time.h" />
<ClInclude Include="compat\unistd.h" />
<ClInclude Include="cpuminer-config.h" />
<ClInclude Include="cuda_blake512.h" />
<ClInclude Include="cuda_combine.h" />
<ClInclude Include="cuda_groestl512.h" />
<ClInclude Include="cuda_groestlcoin.h" />
<ClInclude Include="cuda_hefty1.h" />
<ClInclude Include="cuda_keccak512.h" />
<ClInclude Include="cuda_sha256.h" />
<ClInclude Include="cuda_helper.h" />
<ClInclude Include="elist.h" />
<ClInclude Include="heavy\cuda_blake512.h" />
<ClInclude Include="heavy\cuda_combine.h" />
<ClInclude Include="heavy\cuda_groestl512.h" />
<ClInclude Include="heavy\cuda_hefty1.h" />
<ClInclude Include="heavy\cuda_keccak512.h" />
<ClInclude Include="heavy\cuda_sha256.h" />
<ClInclude Include="hefty1.h" />
<ClInclude Include="miner.h" />
<ClInclude Include="sph\sph_blake.h" />
@ -290,16 +291,16 @@ copy "$(CudaToolkitBinDir)\cudart*.dll" "$(OutDir)"</Command>
<ClInclude Include="uint256.h" />
</ItemGroup>
<ItemGroup>
<CudaCompile Include="cuda_blake512.cu" />
<CudaCompile Include="cuda_combine.cu" />
<CudaCompile Include="cuda_fugue256.cu" />
<CudaCompile Include="cuda_groestl512.cu" />
<CudaCompile Include="cuda_groestlcoin.cu" />
<CudaCompile Include="cuda_hefty1.cu" />
<CudaCompile Include="cuda_keccak512.cu" />
<CudaCompile Include="cuda_myriadgroestl.cu" />
<CudaCompile Include="cuda_sha256.cu" />
<CudaCompile Include="heavy.cu" />
<CudaCompile Include="heavy\cuda_blake512.cu" />
<CudaCompile Include="heavy\cuda_combine.cu" />
<CudaCompile Include="heavy\cuda_groestl512.cu" />
<CudaCompile Include="heavy\cuda_hefty1.cu" />
<CudaCompile Include="heavy\cuda_keccak512.cu" />
<CudaCompile Include="heavy\cuda_sha256.cu" />
<CudaCompile Include="heavy\heavy.cu" />
<CudaCompile Include="JHA\cuda_jha_compactionTest.cu" />
<CudaCompile Include="JHA\cuda_jha_keccak512.cu" />
<CudaCompile Include="JHA\jackpotcoin.cu" />

View File

@ -46,6 +46,12 @@
<Filter Include="Header Files\sph">
<UniqueIdentifier>{7c2a98c6-064c-4a69-b803-d6f6ff5edd0b}</UniqueIdentifier>
</Filter>
<Filter Include="Source Files\CUDA\heavy">
<UniqueIdentifier>{c3222908-22ba-4586-a637-6363f455b06d}</UniqueIdentifier>
</Filter>
<Filter Include="Header Files\CUDA\heavy">
<UniqueIdentifier>{3281db48-f394-49ea-a1ef-6ebd09828d50}</UniqueIdentifier>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="compat\jansson\dump.c">
@ -167,24 +173,6 @@
<ClInclude Include="hefty1.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="cuda_sha256.h">
<Filter>Header Files\CUDA</Filter>
</ClInclude>
<ClInclude Include="cuda_hefty1.h">
<Filter>Header Files\CUDA</Filter>
</ClInclude>
<ClInclude Include="cuda_keccak512.h">
<Filter>Header Files\CUDA</Filter>
</ClInclude>
<ClInclude Include="cuda_combine.h">
<Filter>Header Files\CUDA</Filter>
</ClInclude>
<ClInclude Include="cuda_blake512.h">
<Filter>Header Files\CUDA</Filter>
</ClInclude>
<ClInclude Include="cuda_groestl512.h">
<Filter>Header Files\CUDA</Filter>
</ClInclude>
<ClInclude Include="uint256.h">
<Filter>Header Files</Filter>
</ClInclude>
@ -230,29 +218,29 @@
<ClInclude Include="sph\sph_types.h">
<Filter>Header Files\sph</Filter>
</ClInclude>
<ClInclude Include="heavy\cuda_blake512.h">
<Filter>Header Files\CUDA\heavy</Filter>
</ClInclude>
<ClInclude Include="heavy\cuda_combine.h">
<Filter>Header Files\CUDA\heavy</Filter>
</ClInclude>
<ClInclude Include="heavy\cuda_groestl512.h">
<Filter>Header Files\CUDA\heavy</Filter>
</ClInclude>
<ClInclude Include="heavy\cuda_hefty1.h">
<Filter>Header Files\CUDA\heavy</Filter>
</ClInclude>
<ClInclude Include="heavy\cuda_keccak512.h">
<Filter>Header Files\CUDA\heavy</Filter>
</ClInclude>
<ClInclude Include="heavy\cuda_sha256.h">
<Filter>Header Files\CUDA\heavy</Filter>
</ClInclude>
<ClInclude Include="cuda_helper.h">
<Filter>Header Files\CUDA</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<CudaCompile Include="cuda_sha256.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="cuda_blake512.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="cuda_groestl512.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="cuda_hefty1.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="cuda_keccak512.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="cuda_combine.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="heavy.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="cuda_fugue256.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
@ -286,5 +274,26 @@
<CudaCompile Include="quark\cuda_skein512.cu">
<Filter>Source Files\CUDA\quark</Filter>
</CudaCompile>
<CudaCompile Include="heavy\cuda_blake512.cu">
<Filter>Source Files\CUDA\heavy</Filter>
</CudaCompile>
<CudaCompile Include="heavy\cuda_combine.cu">
<Filter>Source Files\CUDA\heavy</Filter>
</CudaCompile>
<CudaCompile Include="heavy\cuda_groestl512.cu">
<Filter>Source Files\CUDA\heavy</Filter>
</CudaCompile>
<CudaCompile Include="heavy\cuda_hefty1.cu">
<Filter>Source Files\CUDA\heavy</Filter>
</CudaCompile>
<CudaCompile Include="heavy\cuda_keccak512.cu">
<Filter>Source Files\CUDA\heavy</Filter>
</CudaCompile>
<CudaCompile Include="heavy\cuda_sha256.cu">
<Filter>Source Files\CUDA\heavy</Filter>
</CudaCompile>
<CudaCompile Include="heavy\heavy.cu">
<Filter>Source Files\CUDA\heavy</Filter>
</CudaCompile>
</ItemGroup>
</Project>

View File

@ -1,4 +1,4 @@
AC_INIT([ccminer], [2014.05.01])
AC_INIT([ccminer], [2014.05.03])
AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM

View File

@ -47,6 +47,7 @@
#define PROGRAM_NAME "minerd"
#define LP_SCANTIME 60
#define HEAVYCOIN_BLKHDR_SZ 84
#define MNR_BLKHDR_SZ 80
// from heavy.cu
#ifdef __cplusplus
@ -121,6 +122,7 @@ struct workio_cmd {
typedef enum {
ALGO_HEAVY, /* Heavycoin hash */
ALGO_MJOLLNIR, /* Mjollnir hash */
ALGO_FUGUE256, /* Fugue256 */
ALGO_GROESTL,
ALGO_MYR_GR,
@ -129,6 +131,7 @@ typedef enum {
static const char *algo_names[] = {
"heavy",
"mjollnir",
"fugue256",
"groestl",
"myr-gr",
@ -154,6 +157,7 @@ static json_t *opt_config;
static const bool opt_time = true;
static sha256_algos opt_algo = ALGO_HEAVY;
static int opt_n_threads = 0;
static double opt_difficulty = 1; // CH
bool opt_trust_pool = false;
uint16_t opt_vote = 9999;
static int num_processors;
@ -195,6 +199,7 @@ Options:\n\
-a, --algo=ALGO specify the algorithm to use\n\
fugue256 Fuguecoin hash\n\
heavy Heavycoin hash\n\
mjollnir Mjollnircoin hash\n\
groestl Groestlcoin hash\n\
myr-gr Myriad-Groestl hash\n\
jackpot Jackpot hash\n\
@ -244,7 +249,7 @@ static char const short_options[] =
#ifdef HAVE_SYSLOG_H
"S"
#endif
"a:c:Dhp:Px:qr:R:s:t:T:o:u:O:Vd:mv:";
"a:c:Dhp:Px:qr:R:s:t:T:o:u:O:Vd:f:mv:";
static struct option const options[] = {
{ "algo", 1, NULL, 'a' },
@ -277,6 +282,7 @@ static struct option const options[] = {
{ "userpass", 1, NULL, 'O' },
{ "version", 0, NULL, 'V' },
{ "devices", 1, NULL, 'd' },
{ "diff", 1, NULL, 'f' },
{ 0, 0, 0, 0 }
};
@ -684,7 +690,7 @@ static void stratum_gen_work(struct stratum_ctx *sctx, struct work *work)
memcpy(work->xnonce2, sctx->job.xnonce2, sctx->xnonce2_size);
/* Generate merkle root */
if (opt_algo == ALGO_HEAVY)
if (opt_algo == ALGO_HEAVY || opt_algo == ALGO_MJOLLNIR)
heavycoin_hash(merkle_root, sctx->job.coinbase, (int)sctx->job.coinbase_size);
else
if (opt_algo == ALGO_FUGUE256 || opt_algo == ALGO_GROESTL)
@ -694,7 +700,7 @@ static void stratum_gen_work(struct stratum_ctx *sctx, struct work *work)
for (i = 0; i < sctx->job.merkle_count; i++) {
memcpy(merkle_root + 32, sctx->job.merkle[i], 32);
if (opt_algo == ALGO_HEAVY)
if (opt_algo == ALGO_HEAVY || opt_algo == ALGO_MJOLLNIR)
heavycoin_hash(merkle_root, merkle_root, 64);
else
sha256d(merkle_root, merkle_root, 64);
@ -738,11 +744,11 @@ static void stratum_gen_work(struct stratum_ctx *sctx, struct work *work)
}
if (opt_algo == ALGO_JACKPOT)
diff_to_target(work->target, sctx->job.diff / 65536.0);
diff_to_target(work->target, sctx->job.diff / (65536.0 * opt_difficulty));
else if (opt_algo == ALGO_FUGUE256 || opt_algo == ALGO_GROESTL)
diff_to_target(work->target, sctx->job.diff / 256.0);
diff_to_target(work->target, sctx->job.diff / (256.0 * opt_difficulty));
else
diff_to_target(work->target, sctx->job.diff);
diff_to_target(work->target, sctx->job.diff / opt_difficulty);
}
static void *miner_thread(void *userdata)
@ -836,7 +842,12 @@ static void *miner_thread(void *userdata)
case ALGO_HEAVY:
rc = scanhash_heavy(thr_id, work.data, work.target,
max_nonce, &hashes_done, work.maxvote);
max_nonce, &hashes_done, work.maxvote, HEAVYCOIN_BLKHDR_SZ);
break;
case ALGO_MJOLLNIR:
rc = scanhash_heavy(thr_id, work.data, work.target,
max_nonce, &hashes_done, 0, MNR_BLKHDR_SZ);
break;
case ALGO_FUGUE256:
@ -1112,6 +1123,7 @@ static void parse_arg (int key, char *arg)
{
char *p;
int v, i;
double d;
switch(key) {
case 'a':
@ -1309,6 +1321,12 @@ static void parse_arg (int key, char *arg)
}
}
break;
case 'f': // CH - Divisor for Difficulty
d = atof(arg);
if (d == 0) /* sanity check */
show_usage_and_exit(1);
opt_difficulty = d;
break;
case 'V':
show_version_and_exit();
case 'h':
@ -1404,7 +1422,7 @@ static void signal_handler(int sig)
}
#endif
#define PROGRAM_VERSION "0.7"
#define PROGRAM_VERSION "0.8"
int main(int argc, char *argv[])
{
struct thr_info *thr;

View File

@ -152,7 +152,7 @@
#define PACKAGE_NAME "ccminer"
/* Define to the full name and version of this package. */
#define PACKAGE_STRING "ccminer 2014.05.01"
#define PACKAGE_STRING "ccminer 2014.05.03"
/* Define to the one symbol short name of this package. */
#undef PACKAGE_TARNAME
@ -161,7 +161,7 @@
#undef PACKAGE_URL
/* Define to the version of this package. */
#define PACKAGE_VERSION "2014.05.01"
#define PACKAGE_VERSION "2014.05.03"
/* If using the C implementation of alloca, define if you know the
direction of stack growth for your system; otherwise it will be

View File

@ -16,9 +16,6 @@ extern int device_map[8];
// aus heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
// aus driver.c
extern "C" void set_device(int device);
// Folgende Definitionen später durch header ersetzen
typedef unsigned char uint8_t;
typedef unsigned int uint32_t;

View File

@ -17,8 +17,8 @@ extern uint32_t *d_nonceVector[8];
// globaler Speicher für unsere Ergebnisse
uint32_t *d_hash5output[8];
// die Message (116 Bytes) mit Padding zur Berechnung auf der GPU
__constant__ uint64_t c_PaddedMessage[16]; // padded message (84+32 bytes + padding)
// die Message (112 bzw. 116 Bytes) mit Padding zur Berechnung auf der GPU
__constant__ uint64_t c_PaddedMessage[16]; // padded message (80/84+32 bytes + padding)
// ---------------------------- BEGIN CUDA blake512 functions ------------------------------------
@ -44,10 +44,12 @@ const uint8_t host_sigma[16][16] =
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
// Diese Makros besser nur für Compile Time Konstanten verwenden. Sie sind langsam.
#define SWAP32(x) \
((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \
(((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
// Diese Makros besser nur für Compile Time Konstanten verwenden. Sie sind langsam.
#define SWAP64(x) \
((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
(((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
@ -58,11 +60,11 @@ const uint8_t host_sigma[16][16] =
(((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
(((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
__constant__ uint64_t c_SecondRound[16];
__constant__ uint64_t c_SecondRound[15];
const uint64_t host_SecondRound[16] =
const uint64_t host_SecondRound[15] =
{
0,0,0,0,0,0,0,0,0,0,0,0,0,SWAP64(1),0,SWAP64(0x3A0)
0,0,0,0,0,0,0,0,0,0,0,0,0,SWAP64(1),0
};
__constant__ uint64_t c_u512[16];
@ -80,24 +82,22 @@ const uint64_t host_u512[16] =
};
#define ROTR(x,n) (((x)<<(64-n))|( (x)>>(n)))
#define G(a,b,c,d,e) \
v[a] += (m[sigma[i][e]] ^ u512[sigma[i][e+1]]) + v[b];\
v[d] = ROTR( v[d] ^ v[a],32); \
v[d] = ROTR64( v[d] ^ v[a],32); \
v[c] += v[d]; \
v[b] = ROTR( v[b] ^ v[c],25); \
v[b] = ROTR64( v[b] ^ v[c],25); \
v[a] += (m[sigma[i][e+1]] ^ u512[sigma[i][e]])+v[b]; \
v[d] = ROTR( v[d] ^ v[a],16); \
v[d] = ROTR64( v[d] ^ v[a],16); \
v[c] += v[d]; \
v[b] = ROTR( v[b] ^ v[c],11);
v[b] = ROTR64( v[b] ^ v[c],11);
__device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt, const uint8_t ((*sigma)[16]), const uint64_t *u512 )
template <int BLOCKSIZE> __device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt, const uint8_t ((*sigma)[16]), const uint64_t *u512 )
{
uint64_t v[16], m[16], i;
#pragma unroll 16
for( i = 0; i < 16; ++i ) m[i] = SWAP64(block[i]);
for( i = 0; i < 16; ++i ) m[i] = cuda_swab64(block[i]);
#pragma unroll 8
for( i = 0; i < 8; ++i ) v[i] = h[i];
@ -113,11 +113,11 @@ __device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt
/* don't xor t when the block is only padding */
if ( !nullt ) {
v[12] ^= 928;
v[13] ^= 928;
v[12] ^= 8*(BLOCKSIZE+32);
v[13] ^= 8*(BLOCKSIZE+32);
}
#pragma unroll 16
//#pragma unroll 16
for( i = 0; i < 16; ++i )
{
/* column step */
@ -136,49 +136,9 @@ __device__ void blake512_compress( uint64_t *h, const uint64_t *block, int nullt
for( i = 0; i < 16; ++i ) h[i % 8] ^= v[i];
}
// Endian Drehung für 32 Bit Typen
static __device__ uint32_t cuda_swab32(uint32_t x)
{
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
}
#include "cuda_helper.h"
// Endian Drehung für 64 Bit Typen
static __device__ uint64_t cuda_swab64(uint64_t x) {
uint32_t h = (x >> 32);
uint32_t l = (x & 0xFFFFFFFFULL);
return (((uint64_t)cuda_swab32(l)) << 32) | ((uint64_t)cuda_swab32(h));
}
// das Hi Word aus einem 64 Bit Typen extrahieren
static __device__ uint32_t HIWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2hiint(__longlong_as_double(x));
#else
return (uint32_t)(x >> 32);
#endif
}
// das Hi Word in einem 64 Bit Typen ersetzen
static __device__ uint64_t REPLACE_HIWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFFULL) | (((uint64_t)y) << 32ULL);
}
// das Lo Word aus einem 64 Bit Typen extrahieren
static __device__ uint32_t LOWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2loint(__longlong_as_double(x));
#else
return (uint32_t)(x & 0xFFFFFFFFULL);
#endif
}
// das Lo Word in einem 64 Bit Typen ersetzen
static __device__ uint64_t REPLACE_LOWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFF00000000ULL) | ((uint64_t)y);
}
__global__ void blake512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
template <int BLOCKSIZE> __global__ void blake512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
@ -211,40 +171,40 @@ __global__ void blake512_gpu_hash(int threads, uint32_t startNounce, void *outpu
// die Nounce durch die thread-spezifische ersetzen
buf[9] = REPLACE_HIWORD(buf[9], nounce);
// den thread-spezifischen Hefty1 hash einsetzen
uint32_t *hefty = heftyHashes + 8 * hashPosition;
buf[10] = REPLACE_HIWORD(buf[10], hefty[0]);
buf[11] = REPLACE_LOWORD(buf[11], hefty[1]);
buf[11] = REPLACE_HIWORD(buf[11], hefty[2]);
buf[12] = REPLACE_LOWORD(buf[12], hefty[3]);
buf[12] = REPLACE_HIWORD(buf[12], hefty[4]);
buf[13] = REPLACE_LOWORD(buf[13], hefty[5]);
buf[13] = REPLACE_HIWORD(buf[13], hefty[6]);
buf[14] = REPLACE_LOWORD(buf[14], hefty[7]);
if (BLOCKSIZE == 84) {
// den thread-spezifischen Hefty1 hash einsetzen
// aufwändig, weil das nicht mit uint64_t Wörtern aligned ist.
buf[10] = REPLACE_HIWORD(buf[10], hefty[0]);
buf[11] = REPLACE_LOWORD(buf[11], hefty[1]);
buf[11] = REPLACE_HIWORD(buf[11], hefty[2]);
buf[12] = REPLACE_LOWORD(buf[12], hefty[3]);
buf[12] = REPLACE_HIWORD(buf[12], hefty[4]);
buf[13] = REPLACE_LOWORD(buf[13], hefty[5]);
buf[13] = REPLACE_HIWORD(buf[13], hefty[6]);
buf[14] = REPLACE_LOWORD(buf[14], hefty[7]);
}
else if (BLOCKSIZE == 80) {
buf[10] = MAKE_ULONGLONG(hefty[0], hefty[1]);
buf[11] = MAKE_ULONGLONG(hefty[2], hefty[3]);
buf[12] = MAKE_ULONGLONG(hefty[4], hefty[5]);
buf[13] = MAKE_ULONGLONG(hefty[6], hefty[7]);
}
// erste Runde
blake512_compress( h, buf, 0, c_sigma, c_u512 );
blake512_compress<BLOCKSIZE>( h, buf, 0, c_sigma, c_u512 );
// zweite Runde
#pragma unroll 16
for (int i=0; i < 16; ++i) buf[i] = c_SecondRound[i];
blake512_compress( h, buf, 1, c_sigma, c_u512 );
#pragma unroll 15
for (int i=0; i < 15; ++i) buf[i] = c_SecondRound[i];
buf[15] = SWAP64(8*(BLOCKSIZE+32)); // Blocksize in Bits einsetzen
blake512_compress<BLOCKSIZE>( h, buf, 1, c_sigma, c_u512 );
// Hash rauslassen
#if 0
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verfügbar sind
uint32_t *outHash = (uint32_t *)outputHash + 16 * hashPosition;
#pragma unroll 8
for (int i=0; i < 8; ++i) {
outHash[2*i+0] = cuda_swab32( HIWORD(h[i]) );
outHash[2*i+1] = cuda_swab32( LOWORD(h[i]) );
}
#else
// in dieser Version passieren auch ein paar 64 Bit Shifts
uint64_t *outHash = (uint64_t *)outputHash + 8 * hashPosition;
#pragma unroll 8
for (int i=0; i < 8; ++i) outHash[i] = cuda_swab64( h[i] );
#endif
}
}
@ -274,22 +234,30 @@ __host__ void blake512_cpu_init(int thr_id, int threads)
cudaMalloc(&d_hash5output[thr_id], 16 * sizeof(uint32_t) * threads);
}
__host__ void blake512_cpu_setBlock(void *pdata)
static int BLOCKSIZE = 84;
__host__ void blake512_cpu_setBlock(void *pdata, int len)
// data muss 84-Byte haben!
// heftyHash hat 32-Byte
{
// Message mit Padding für erste Runde bereitstellen
unsigned char PaddedMessage[128];
memcpy(PaddedMessage, pdata, 84);
memset(PaddedMessage+84, 0, 32); // leeres Hefty Hash einfüllen
memset(PaddedMessage+116, 0, 12);
PaddedMessage[116] = 0x80;
if (len == 84) {
// Message mit Padding für erste Runde bereitstellen
memcpy(PaddedMessage, pdata, 84);
memset(PaddedMessage+84, 0, 32); // leeres Hefty Hash einfüllen
memset(PaddedMessage+116, 0, 12);
PaddedMessage[116] = 0x80;
} else if (len == 80) {
memcpy(PaddedMessage, pdata, 80);
memset(PaddedMessage+80, 0, 32); // leeres Hefty Hash einfüllen
memset(PaddedMessage+112, 0, 16);
PaddedMessage[112] = 0x80;
}
// die Message (116 Bytes) ohne Padding zur Berechnung auf der GPU
cudaMemcpyToSymbol( c_PaddedMessage, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
BLOCKSIZE = len;
}
__host__ void blake512_cpu_hash(int thr_id, int threads, uint32_t startNounce)
{
const int threadsperblock = 256;
@ -303,5 +271,8 @@ __host__ void blake512_cpu_hash(int thr_id, int threads, uint32_t startNounce)
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
blake512_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, d_hash5output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
if (BLOCKSIZE == 80)
blake512_gpu_hash<80><<<grid, block, shared_size>>>(threads, startNounce, d_hash5output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
else if (BLOCKSIZE == 84)
blake512_gpu_hash<84><<<grid, block, shared_size>>>(threads, startNounce, d_hash5output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
}

View File

@ -2,7 +2,6 @@
#define _CUDA_BLAKE512_H
void blake512_cpu_init(int thr_id, int threads);
void blake512_cpu_setBlock(void *pdata);
void blake512_cpu_setBlock(void *pdata, int len);
void blake512_cpu_hash(int thr_id, int threads, uint32_t startNounce);
#endif

View File

@ -676,7 +676,7 @@ __device__ void groestl512_perm_Q(uint32_t *a)
}
}
__global__ void groestl512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
template <int BLOCKSIZE> __global__ void groestl512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
@ -706,7 +706,7 @@ __global__ void groestl512_gpu_hash(int threads, uint32_t startNounce, void *out
uint32_t *heftyHash = &heftyHashes[8 * hashPosition];
#pragma unroll 8
for (int k=0; k<8; ++k)
message[21+k] = heftyHash[k];
message[BLOCKSIZE/4+k] = heftyHash[k];
uint32_t g[32];
#pragma unroll 32
@ -764,21 +764,27 @@ __host__ void groestl512_cpu_init(int thr_id, int threads)
cudaMalloc(&d_hash4output[thr_id], 16 * sizeof(uint32_t) * threads);
}
__host__ void groestl512_cpu_setBlock(void *data)
// data muss 84-Byte haben!
static int BLOCKSIZE = 84;
__host__ void groestl512_cpu_setBlock(void *data, int len)
// data muss 80/84-Byte haben!
// heftyHash hat 32-Byte
{
// Nachricht expandieren und setzen
uint32_t msgBlock[32];
memset(msgBlock, 0, sizeof(uint32_t) * 32);
memcpy(&msgBlock[0], data, 84);
memcpy(&msgBlock[0], data, len);
// Erweitere die Nachricht auf den Nachrichtenblock (padding)
// Unsere Nachricht hat 116 Byte
msgBlock[29] = 0x80;
msgBlock[31] = 0x01000000;
// Unsere Nachricht hat 112/116 Byte
if (len == 84) {
msgBlock[29] = 0x80;
msgBlock[31] = 0x01000000;
} else if (len == 80) {
msgBlock[28] = 0x80;
msgBlock[31] = 0x01000000;
}
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird
// auf der GPU ausgeführt)
@ -796,6 +802,8 @@ __host__ void groestl512_cpu_setBlock(void *data)
cudaMemcpyToSymbol( groestl_gpu_msg,
msgBlock,
128);
BLOCKSIZE = len;
}
__host__ void groestl512_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy)
@ -818,5 +826,8 @@ __host__ void groestl512_cpu_hash(int thr_id, int threads, uint32_t startNounce)
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
groestl512_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, d_hash4output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
if (BLOCKSIZE == 84)
groestl512_gpu_hash<84><<<grid, block, shared_size>>>(threads, startNounce, d_hash4output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
else if (BLOCKSIZE == 80)
groestl512_gpu_hash<80><<<grid, block, shared_size>>>(threads, startNounce, d_hash4output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
}

View File

@ -3,7 +3,7 @@
void groestl512_cpu_init(int thr_id, int threads);
void groestl512_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy);
void groestl512_cpu_setBlock(void *data);
void groestl512_cpu_setBlock(void *data, int len);
void groestl512_cpu_hash(int thr_id, int threads, uint32_t startNounce);
#endif

View File

@ -2,21 +2,24 @@
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
// aus cpu-miner.c
extern int device_map[8];
#include <stdio.h>
#include <memory.h>
#define USE_SHARED 1
// aus cpu-miner.c
extern int device_map[8];
// aus heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
// Folgende Definitionen später durch header ersetzen
typedef unsigned int uint32_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
// diese Struktur wird in der Init Funktion angefordert
static cudaDeviceProp props;
static cudaDeviceProp props[8];
// globaler Speicher für alle HeftyHashes aller Threads
uint32_t *d_heftyHashes[8];
@ -286,7 +289,7 @@ __global__ void hefty_gpu_hash(int threads, uint32_t startNounce, void *outputHa
for(int j=0;j<16;j++)
{
Absorb(sponge, regs[3] + regs[7]);
hefty_gpu_round(regs, W2[j], heftyLookUp(j + 16 * (k+1)), sponge);
hefty_gpu_round(regs, W2[j], heftyLookUp(j + ((k+1)<<4)), sponge);
}
#pragma unroll 16
for(int j=0;j<16;j++)
@ -299,7 +302,7 @@ __global__ void hefty_gpu_hash(int threads, uint32_t startNounce, void *outputHa
#pragma unroll 8
for(int k=0;k<8;k++)
((uint32_t*)outputHash)[8*thread+k] = SWAB32(hash[k]);
((uint32_t*)outputHash)[(thread<<3)+k] = SWAB32(hash[k]);
}
}
@ -308,7 +311,7 @@ __host__ void hefty_cpu_init(int thr_id, int threads)
{
cudaSetDevice(device_map[thr_id]);
cudaGetDeviceProperties(&props, device_map[thr_id]);
cudaGetDeviceProperties(&props[thr_id], device_map[thr_id]);
// Kopiere die Hash-Tabellen in den GPU-Speicher
cudaMemcpyToSymbol( hefty_gpu_constantTable,
@ -319,16 +322,21 @@ __host__ void hefty_cpu_init(int thr_id, int threads)
cudaMalloc(&d_heftyHashes[thr_id], 8 * sizeof(uint32_t) * threads);
}
__host__ void hefty_cpu_setBlock(int thr_id, int threads, void *data)
// data muss 84-Byte haben!
__host__ void hefty_cpu_setBlock(int thr_id, int threads, void *data, int len)
// data muss 80/84-Byte haben!
{
// Nachricht expandieren und setzen
uint32_t msgBlock[32];
memset(msgBlock, 0, sizeof(uint32_t) * 32);
memcpy(&msgBlock[0], data, 84);
msgBlock[21] |= 0x80;
msgBlock[31] = 672; // bitlen
memcpy(&msgBlock[0], data, len);
if (len == 84) {
msgBlock[21] |= 0x80;
msgBlock[31] = 672; // bitlen
} else if (len == 80) {
msgBlock[20] |= 0x80;
msgBlock[31] = 640; // bitlen
}
for(int i=0;i<31;i++) // Byteorder drehen
msgBlock[i] = SWAB32(msgBlock[i]);
@ -395,7 +403,7 @@ __host__ void hefty_cpu_hash(int thr_id, int threads, int startNounce)
{
// Compute 3.x und 5.x Geräte am besten mit 768 Threads ansteuern,
// alle anderen mit 512 Threads.
int threadsperblock = (props.major >= 3) ? 768 : 512;
int threadsperblock = (props[thr_id].major >= 3) ? 768 : 512;
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock);
@ -411,4 +419,7 @@ __host__ void hefty_cpu_hash(int thr_id, int threads, int startNounce)
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
hefty_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, (void*)d_heftyHashes[thr_id]);
// Strategisches Sleep Kommando zur Senkung der CPU Last
MyStreamSynchronize(NULL, 0, thr_id);
}

View File

@ -2,7 +2,7 @@
#define _CUDA_HEFTY1_H
void hefty_cpu_hash(int thr_id, int threads, int startNounce);
void hefty_cpu_setBlock(int thr_id, int threads, void *data);
void hefty_cpu_setBlock(int thr_id, int threads, void *data, int len);
void hefty_cpu_init(int thr_id, int threads);
#endif

View File

@ -16,6 +16,8 @@ extern uint32_t *d_nonceVector[8];
// globaler Speicher für unsere Ergebnisse
uint32_t *d_hash3output[8];
extern uint32_t *d_hash4output[8];
extern uint32_t *d_hash5output[8];
// der Keccak512 State nach der ersten Runde (72 Bytes)
__constant__ uint64_t c_State[25];
@ -25,7 +27,7 @@ __constant__ uint32_t c_PaddedMessage2[18]; // 44 bytes of remaining message (No
// ---------------------------- BEGIN CUDA keccak512 functions ------------------------------------
#define ROTL64(a,b) (((a) << (b)) | ((a) >> (64 - b)))
#include "cuda_helper.h"
#define U32TO64_LE(p) \
(((uint64_t)(*p)) | (((uint64_t)(*(p + 1))) << 32))
@ -145,7 +147,7 @@ keccak_block(uint64_t *s, const uint32_t *in, const uint64_t *keccak_round_const
}
// Die Hash-Funktion
__global__ void keccak512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
template <int BLOCKSIZE> __global__ void keccak512_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
@ -171,7 +173,7 @@ __global__ void keccak512_gpu_hash(int threads, uint32_t startNounce, void *outp
msgBlock[1] = nounce;
// den individuellen Hefty1 Hash einsetzen
mycpy32(&msgBlock[3], &heftyHashes[8 * hashPosition]);
mycpy32(&msgBlock[(BLOCKSIZE-72)/sizeof(uint32_t)], &heftyHashes[8 * hashPosition]);
// den Block einmal gut durchschütteln
keccak_block(keccak_gpu_state, msgBlock, c_keccak_round_constants);
@ -184,7 +186,6 @@ __global__ void keccak512_gpu_hash(int threads, uint32_t startNounce, void *outp
U64TO32_LE((&hash[i/4]), keccak_gpu_state[i / 8]);
}
// und ins Global Memory rausschreiben
#pragma unroll 16
for(int k=0;k<16;k++)
@ -217,38 +218,49 @@ __host__ void keccak512_cpu_init(int thr_id, int threads)
// --------------- END keccak512 CPU version from scrypt-jane code --------------------
__host__ void keccak512_cpu_setBlock(void *data)
// data muss 84-Byte haben!
static int BLOCKSIZE = 84;
__host__ void keccak512_cpu_setBlock(void *data, int len)
// data muss 80 oder 84-Byte haben!
// heftyHash hat 32-Byte
{
// CH
// state init
uint64_t keccak_cpu_state[25];
memset(keccak_cpu_state, 0, 200);
memset(keccak_cpu_state, 0, sizeof(keccak_cpu_state));
// erste Runde
keccak_block((uint64_t*)&keccak_cpu_state, (const uint32_t*)data, host_keccak_round_constants);
// state kopieren
cudaMemcpyToSymbol( c_State, keccak_cpu_state, 25*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
// keccak hat 72-Byte blöcke, d.h. in unserem Fall zwei Blöcke
// zu jeweils
uint32_t msgBlock[18];
memset(msgBlock, 0, 18 * sizeof(uint32_t));
// kopiere die Daten rein (aber nur alles nach Bit 72)
memcpy(&msgBlock[0], &((uint8_t*)data)[72], 12);
// kopiere die restlichen Daten rein (aber nur alles nach Byte 72)
if (len == 84)
memcpy(&msgBlock[0], &((uint8_t*)data)[72], 12);
else if (len == 80)
memcpy(&msgBlock[0], &((uint8_t*)data)[72], 8);
// Nachricht abschließen
msgBlock[11] = 0x01;
if (len == 84)
msgBlock[11] = 0x01;
else if (len == 80)
msgBlock[10] = 0x01;
msgBlock[17] = 0x80000000;
// erste Runde
keccak_block((uint64_t*)&keccak_cpu_state, (const uint32_t*)data, host_keccak_round_constants);
// Message 2 ins Constant Memory kopieren (die variable Nonce und
// der Hefty1 Anteil muss aber auf der GPU erst noch ersetzt werden)
cudaMemcpyToSymbol( c_PaddedMessage2, msgBlock, 18*sizeof(uint32_t), 0, cudaMemcpyHostToDevice );
// state kopieren
cudaMemcpyToSymbol( c_State, keccak_cpu_state, 25*sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
BLOCKSIZE = len;
}
__host__ void keccak512_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy)
{
// Hefty1 Hashes kopieren
@ -268,6 +280,8 @@ __host__ void keccak512_cpu_hash(int thr_id, int threads, uint32_t startNounce)
size_t shared_size = 0;
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
keccak512_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, d_hash3output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
if (BLOCKSIZE==84)
keccak512_gpu_hash<84><<<grid, block, shared_size>>>(threads, startNounce, d_hash3output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
else if (BLOCKSIZE==80)
keccak512_gpu_hash<80><<<grid, block, shared_size>>>(threads, startNounce, d_hash3output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
}

View File

@ -2,7 +2,7 @@
#define _CUDA_KECCAK512_H
void keccak512_cpu_init(int thr_id, int threads);
void keccak512_cpu_setBlock(void *data);
void keccak512_cpu_setBlock(void *data, int len);
void keccak512_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy);
void keccak512_cpu_hash(int thr_id, int threads, uint32_t startNounce);

View File

@ -47,7 +47,7 @@ uint32_t sha256_cpu_constantTable[] = {
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) )
// Die Hash-Funktion
__global__ void sha256_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
template <int BLOCKSIZE> __global__ void sha256_gpu_hash(int threads, uint32_t startNounce, void *outputHash, uint32_t *heftyHashes, uint32_t *nonceVector)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
@ -82,11 +82,10 @@ __global__ void sha256_gpu_hash(int threads, uint32_t startNounce, void *outputH
uint32_t offset = 8 * (blockDim.x * blockIdx.x + threadIdx.x);
#pragma unroll 8
for(int k=0;k<8;k++)
W1[5+k] = heftyHashes[offset + k];
W1[((BLOCKSIZE-64)/4)+k] = heftyHashes[offset + k];
#pragma unroll 8
for (int i=5; i <5+8; ++i) W1[i] = SWAB32(W1[i]); // die Hefty1 Hashes brauchen eine Drehung ;)
for (int i=((BLOCKSIZE-64)/4); i < ((BLOCKSIZE-64)/4)+8; ++i) W1[i] = SWAB32(W1[i]); // die Hefty1 Hashes brauchen eine Drehung ;)
W1[3] = SWAB32(nounce);
// Progress W1
@ -178,18 +177,26 @@ __host__ void sha256_cpu_init(int thr_id, int threads)
cudaMalloc(&d_hash2output[thr_id], 8 * sizeof(uint32_t) * threads);
}
__host__ void sha256_cpu_setBlock(void *data)
// data muss 84-Byte haben!
static int BLOCKSIZE = 84;
__host__ void sha256_cpu_setBlock(void *data, int len)
// data muss 80/84-Byte haben!
// heftyHash hat 32-Byte
{
// Nachricht expandieren und setzen
uint32_t msgBlock[32];
memset(msgBlock, 0, sizeof(uint32_t) * 32);
memcpy(&msgBlock[0], data, 84);
memset(&msgBlock[21], 0, 32); // vorläufig Nullen anstatt der Hefty1 Hashes einfüllen
msgBlock[29] |= 0x80;
msgBlock[31] = 928; // bitlen
memcpy(&msgBlock[0], data, len);
if (len == 84) {
memset(&msgBlock[21], 0, 32); // vorläufig Nullen anstatt der Hefty1 Hashes einfüllen
msgBlock[29] |= 0x80;
msgBlock[31] = 928; // bitlen
} else if (len == 80) {
memset(&msgBlock[20], 0, 32); // vorläufig Nullen anstatt der Hefty1 Hashes einfüllen
msgBlock[28] |= 0x80;
msgBlock[31] = 896; // bitlen
}
for(int i=0;i<31;i++) // Byteorder drehen
msgBlock[i] = SWAB32(msgBlock[i]);
@ -209,7 +216,7 @@ __host__ void sha256_cpu_setBlock(void *data)
uint32_t hash[8];
// pre
for (int k=0; k < 8; k++)
for (int k=0; k < 8; k++)
{
regs[k] = sha256_cpu_hashTable[k];
hash[k] = regs[k];
@ -242,6 +249,8 @@ __host__ void sha256_cpu_setBlock(void *data)
cudaMemcpyToSymbol( sha256_gpu_blockHeader,
&msgBlock[16],
64);
BLOCKSIZE = len;
}
__host__ void sha256_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy)
@ -263,6 +272,9 @@ __host__ void sha256_cpu_hash(int thr_id, int threads, int startNounce)
size_t shared_size = 0;
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
sha256_gpu_hash<<<grid, block, shared_size>>>(threads, startNounce, d_hash2output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
if (BLOCKSIZE == 84)
sha256_gpu_hash<84><<<grid, block, shared_size>>>(threads, startNounce, d_hash2output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
else if (BLOCKSIZE == 80) {
sha256_gpu_hash<80><<<grid, block, shared_size>>>(threads, startNounce, d_hash2output[thr_id], d_heftyHashes[thr_id], d_nonceVector[thr_id]);
}
}

View File

@ -2,7 +2,7 @@
#define _CUDA_SHA256_H
void sha256_cpu_init(int thr_id, int threads);
void sha256_cpu_setBlock(void *data);
void sha256_cpu_setBlock(void *data, int len);
void sha256_cpu_hash(int thr_id, int threads, int startNounce);
void sha256_cpu_copyHeftyHash(int thr_id, int threads, void *heftyHashes, int copy);
#endif

View File

@ -22,12 +22,12 @@
#include "sph/sph_blake.h"
#include "sph/sph_groestl.h"
#include "cuda_hefty1.h"
#include "cuda_sha256.h"
#include "cuda_keccak512.h"
#include "cuda_groestl512.h"
#include "cuda_blake512.h"
#include "cuda_combine.h"
#include "heavy/cuda_hefty1.h"
#include "heavy/cuda_sha256.h"
#include "heavy/cuda_keccak512.h"
#include "heavy/cuda_groestl512.h"
#include "heavy/cuda_blake512.h"
#include "heavy/cuda_combine.h"
extern uint32_t *d_hash2output[8];
extern uint32_t *d_hash3output[8];
@ -35,6 +35,7 @@ extern uint32_t *d_hash4output[8];
extern uint32_t *d_hash5output[8];
#define HEAVYCOIN_BLKHDR_SZ 84
#define MNR_BLKHDR_SZ 80
// nonce-array für die threads
uint32_t *d_nonceVector[8];
@ -230,24 +231,29 @@ cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id)
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote);
unsigned long *hashes_done, uint32_t maxvote, int blocklen);
extern "C"
int scanhash_heavy(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote)
unsigned long *hashes_done, uint32_t maxvote, int blocklen)
{
return scanhash_heavy_cpp(thr_id, pdata,
ptarget, max_nonce, hashes_done, maxvote);
ptarget, max_nonce, hashes_done, maxvote, blocklen);
}
extern bool opt_benchmark;
int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote)
unsigned long *hashes_done, uint32_t maxvote, int blocklen)
{
// CUDA will process thousands of threads.
const int throughput = 4096 * 128;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x000000ff;
int rc = 0;
uint32_t *hash = NULL;
cudaMallocHost(&hash, throughput*8*sizeof(uint32_t));
@ -258,7 +264,6 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
memset(nrmCalls, 0, sizeof(int) * 6);
uint32_t start_nonce = pdata[19];
uint16_t *ext = (uint16_t *)&pdata[20];
// für jeden Hash ein individuelles Target erstellen basierend
// auf dem höchsten Bit, das in ptarget gesetzt ist.
@ -282,26 +287,30 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
cudaMalloc(&d_nonceVector[thr_id], sizeof(uint32_t) * throughput);
}
if (blocklen == HEAVYCOIN_BLKHDR_SZ)
{
uint16_t *ext = (uint16_t *)&pdata[20];
if (opt_vote > maxvote) {
printf("Warning: Your block reward vote (%hu) exceeds "
"the maxvote reported by the pool (%hu).\n",
opt_vote, maxvote);
}
if (opt_vote > maxvote) {
printf("Warning: Your block reward vote (%hu) exceeds "
"the maxvote reported by the pool (%hu).\n",
opt_vote, maxvote);
}
if (opt_trust_pool && opt_vote > maxvote) {
printf("Warning: Capping block reward vote to maxvote reported by pool.\n");
ext[0] = maxvote;
if (opt_trust_pool && opt_vote > maxvote) {
printf("Warning: Capping block reward vote to maxvote reported by pool.\n");
ext[0] = maxvote;
}
else
ext[0] = opt_vote;
}
else
ext[0] = opt_vote;
// Setze die Blockdaten
hefty_cpu_setBlock(thr_id, throughput, pdata);
sha256_cpu_setBlock(pdata);
keccak512_cpu_setBlock(pdata);
groestl512_cpu_setBlock(pdata);
blake512_cpu_setBlock(pdata);
hefty_cpu_setBlock(thr_id, throughput, pdata, blocklen);
sha256_cpu_setBlock(pdata, blocklen);
keccak512_cpu_setBlock(pdata, blocklen);
groestl512_cpu_setBlock(pdata, blocklen);
blake512_cpu_setBlock(pdata, blocklen);
do {
int i;
@ -370,7 +379,7 @@ int scanhash_heavy_cpp(int thr_id, uint32_t *pdata,
if (fulltest(foundhash, ptarget)) {
uint32_t verification[8];
pdata[19] += nonce - pdata[19];
heavycoin_hash((unsigned char *)verification, (const unsigned char *)pdata, HEAVYCOIN_BLKHDR_SZ);
heavycoin_hash((unsigned char *)verification, (const unsigned char *)pdata, blocklen);
if (memcmp(verification, foundhash, 8*sizeof(uint32_t))) {
applog(LOG_ERR, "hash for nonce=$%08X does not validate on CPU!\n", nonce);
}

View File

@ -205,7 +205,7 @@ extern int scanhash_scrypt(int thr_id, uint32_t *pdata,
extern int scanhash_heavy(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done, uint32_t maxvote);
unsigned long *hashes_done, uint32_t maxvote, int blocklen);
extern int scanhash_fugue256(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,